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In this paper we investigate some of the ar i thmetical p roper t i es of the famous 
Fibonacci sequence by use of e lementary mat r ix algebra. We believe the approach 
to be conceptual ancls at leas t in par t , novel. Thus, it is our purpose to explore 
the pedagogical advantages of mat r ix methods for problems of this kind as well as 
to provide a refreshing appreciation of the ar i thmet ical proper t ies themselves . At 
the conclusion of the paper we also indicate how the methods may be applied to other 
l inear r e cu r r en t sequences. 

We begin by considering the following example. Suppose that the Fibonacci 
sequence 

0, 1. 1, 2. 3, 5, 8, 13. 21 , 34; 55. 89, 144.. . . . 

i s reduced modulo 8: 

, 0, 1 , 1 , 2. 3. 5, 0, 5. 5. 2, 7. 1, 0. F 1, — 

We observe that the reduced sequence is periodic. Indeed, the 12 t e r m s of the 
per iod form two se ts of 6 t e r m s each, the t e r m s of the second half being 5 t imes 
the corresponding t e r m s of the f i rs t half. We say that the Fibonacci sequence r e -
duced modulo 8 is of period 12 and res t r i c t ed period 6 with multiplier 5, Also, we 
observe that the mult ipl ier is of exponent 2 modulo 8. 

More general ly, let u0, Uj, •••, u , *** be the Fibonacci sequence of in tegers 
satisfying u 9 = u n + 1 + u n for n > 0 with (U()5 at) = (0, 1). Given any integer 
m ^ 1 we provide below an elementary proof of the fact that there is a positive 
integer n such that (u , u . ) = (0. 1) (mod m). The least such integer 6(m) is 
called the period of the Fibonacci sequence modulo m. The least positive integer n 
sLieh that (u . u ..) = s(0. 1) (mod m), where s is some integer, is called the 

i r n + 1 ' ' '• 

r e s t r i c t ed period aim) of the sequence modulo m. If (u . u ) - s(m) (0.1) 
(mod m). 0 < s(m) < m, then s(m) is called the mult iplier of the Fibonacci s e -
quence modulo m. Obviously s(m) = u ,-. (mod m), Finally, we denote the 
exponent modulo m of the mult ipl ier s(m) by /j(m). 

^Presen ted to the Mathematical Association of Amer ica , Southern California Sec-
tion, March 9, 1963. 
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By d i rec t calculation we obtain the following table: 

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Q,(m) 3 4 6 5 12 8 6 12 15 10 12 7 24 20 12 9 12 18 

(3{my 1 2 1 4 2 2 2 2 4 1 2 4 2 2 2 4 2 1 

6 ( m ) 3 8 6 20 24 16 12 24 60 10 24 28 48 40 24 36 24 18 

The resu l t s of this table i l lus t ra te severa l in teres t ing ar i thmet ical p roper t i es . 
In fact, if (a,b) a n d [ a , b ] denote the grea tes t common divisor and the leas t com-
mon multiple, respect ively , of the integers a and b , then we propose to e s t ab -
l ish the following: 

(i) m ju if and only if a(m) in, and m|u , m|(u . - 1) if and only if <5(m) i n; 
(ii) 6(m) = a(m)P(m) = (2,/3(m)) [y(m),ar(m)] , where 7(2) = 1 and 7(m) = 2 

for m > 2; 
(iii) a([m1,m2]\= [fffm]), a(m2)] , and 6([m1, m2 ]) = [&(mt). 6(m2)] ; 
(iv) for every odd p r ime p there i s a positive integer e(p) such that a(p ) 

, . max(0. e-e(p)) , s. e. w , max(0. e-e(p)) = a(p)p v ' ^" and <5(p ) = <5(p)p ; 
(v) #(p)|(p - (5/p)), where (5/p) is the usual Legendre symbol; fur thermore , 

if p ^ 5, then 6(p)|(p-l) or 6(p)|2(p + 1). 
With the possible exception of the last equation of (ii). which is due to Morgan 

Ward, these p roper t i es a re all well known. Indeed, the fact that reduced sequences 
of this type a re periodic was observed by J . L. Lagrange in the eighteenth century. 
A century la ter E. Lucas engaged in an extensive study of the ar i thmet ic d ivisors 
of such sequences. These ear ly resu l t s together with some of the la ter develop-
ments in the subject a re reviewed in Chapter 17 of Dickson's History [6]. How-
ever , it is suggested that this general background be supplemented with at leas t 
the papers of Carmichael [ 3 ] , Lehmer [ l l ] , and Ward [19] , (See also [4, 7, 8, 
9, 10, 17, 20, 21 ] . ) 

Fu r the rmore , since the main purpose of this p resen t paper is to indicate the 
use of matr ix algebra for the study of l inear r ecu r r ence re la t ions , we also r e m a r k 
that such techniques a re certainly not new. (See for example [ 1, 13, 16, 18] . ) In 
fact, some of the ar i thmet ica l p roper t ies of l inear r ecu r r en t sequences have been 
studied by means of ma t r i ces . (See for example [ 2 , 12, 15] . ) It is our aim to now 
indicate some of the further possibi l i t ies of this method. 
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We begin by introducing the main tool of our discussion. Specifically, we 
view the l inear r e c u r r e n c e above as defining a mapping of the o rde redpa i r (u ,u ) 
onto the o rdered pair (u „u ,..)• Since u . = u ., + u . it i s c lear that this ^ n ' n+ l ; n+1 n-1 n9 

mapping is represen ted by the mat r ix product (u _1 ,u )U (u ,u , _,), wher^ nJ n+ l ; ? ^ 

0 1 

1 1 

F u r t h e r m o r e , by induction on n," we observe that ( u
n > u

n + i ) = (°> 1 ) u a n d 

u . u n -1 n 
u u. ^ n n+1 

Because of these resu l t s we call U the Fibonaccixmatrixa 

F r o m the foregoing it is evident that (u ,u ..) = (0, 1) (mod m) if and only 
if U is congruent (elementwise) modulo m to the identity matr ix . Thus, the study 
of the per iod of the Fibonacci sequence modulo m is equivalent to the study of the 
per iod of the sequence I, U, U2, reduced modulo m. In par t icu la r , 
since there a re only a finite number of distinct ma t r i ce s in this reduced sequence, 
it follows that there a re in tegers k and n such that U is congruent to U 

with k + n > k > 0. But since the determinant of U is the unit - 1 , this means 
that for some positive integer n, U = 1 (mod m). Thus, there exists a leas t 
such positive integer n, which is in fact <5(m) as defined above. Also, it is c lear 
that every such n is an integral multiple of <5(m). That i s , U = I (mod m) if 
and only if <5(m)|n, which is equivalent to the second statement of (i). 

By a s imi la r argument we have (u , u _.) = s(0, 1) (mod m) if and only if 
n n 

U = si (mod m). Indeed, U i s congruent to a sca la r mat r ix modulo m if and 
only if a(m)\n, where a(m) i s the r e s t r i c t ed period defined above. This resu l t is 
equivalent to the f i rs t pa r t of (i). 

F u r t h e r m o r e , we have 

ifW = s(m) I (mod m) 

where the mult ipl ier s(m) is of exponent /3(mj modulo m. Since U 
= s ( m ) ^ m ^ 1 = 1 (mod m), 6(m)|cKm)/3(m). On the other hand, since it is evident that 
a(m)\ <5(m), we have by a s imi la r argument that /3(m)| 6(m)/a(m). Thus, <5(m) 
= a(m)/3(m), which es tabl ishes the f irst equation of (ii). 



32 THE FIBONACCI MATRIX MODULO m [April 

Also, since the determinant of U is - 1 , we have from the mat r ix congruence 
above that 

(_1 )^(m) ^ (S(m))2 (modm) 

Hence, these congruent in tegers have the same exponent modulo m. Specifically, 

7(m) _ g(m) 
(/(m), or(m)) (2,0(m)) 

where 7(m) is the exponent of -1 modulo m. Tnat is 

6(m) = «(mW?<m) = (2,/3(m)) ^ J ^ y , 

which is c lear ly equivalent to (ii). In par t icu lar , we observe that <5(m) is even for 
m > 2 and that /3(m)|4. 

We now demonstrate the second equation of (iii). We f irs t observe that if 
m T | m , then U = I (modm1) and 6(mf)| <5(m). Thus, since m1 and m2 both 
divide [ m 1 . m 2 ] , it follows that 6([m1,m2]) i s a common multiple of d(rn.t) and 
<5(m2). On the other hand, suppose d(mt) and <5(m2) both divide <5. Since U is 
congruent to the identity mat r ix modulo both m t and m2, the congruence is also 
valid modulo [m1 ? m 2 ] , That i s , ^ ( [m^mg] ) divides d and is therefore the 
leas t common multiple of 5(m1) and <5(m2). 

We obtain s imilar ly the f i rs t equation of (iii). Thus, we observe that both a 
and 6 a re factorable (1. c. m. multiplicative) functions of the argument m, which 
suggests next the consideration of property (iv). 

Therefore , let p be any odd pr ime and let e be any positive integer . Since 
U 6 ( P * = I + p e B for some matr ix B, U p 6 ( p ) = (I + p G B) P = I (mod p G + 1 ) . That 

e+1 t e e [ e+1 
i s , 6(p ) |p <5(p ). But obviously 6(p ) | 6(p ). We conclude, since p i s a 

e+1 e e e 
p r ime , that dip ) is e i ther <5(p ) or p dip ). In par t icu lar , dip )/ dip) is some 
non-negative power of p. Similarly, a(p )/ctip) is some non-negative power of p. 
Recalling that for any given modulus the ratio of the period to the r e s t r i c t ed period 
divides 4 and that p is odd, it is immediate from the identity 
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g(pe) <MR!) = 51R!) _6(p) 
^(P) ' a(p^ <5(p) ' a(p) 

that a(pe)/a(p) = S(pe)/5(p) and 6{pe)/a(pe) = 6(p)/or(p). e 

Moreover , suppose that 6(pe ) ^ <5(pe). Then U ^ ' = I + p e B with 
B £ 0 (mod p). Hences 

T T P < 5 ( p ) T , e+1^ / T , , e+2. U ; = I + p B ^ i (mod p ) 

e+1 p p+? p+1 
That i s , if 6(p ) = p6(p ), then 5(p ) = pS(p ). Consequently, if e(p) 
i s the l a rges t positive e such that 6(pe) = 6(p), then <5(pe) = 6(p) for 1 <e _< e(p) 

g g _ Q /p \ 
and 6(p ) = p <5(p) for e > e(p). Finally, the existence of e(p) i s a s su red 
from a consideration of the al ternat ive: if U ^ = I (mod p e ) , e = 1,2, • • •, then 
U - I, which is impossible . This completes the proof of (iv). 

It is of in te res t to r e m a r k that a tes t [17J with a digital computer has shown 

that e(p) = 1 for all p r imes p l ess than 10,000. However, the problem of ident i -

fying the exceptional p r imes p with e(p) > 1 remains unsolved. 

Finally, we prove proper ty (v). For every p r ime p we define the r e s t r i c t ed 

graph R(p) of U modulo p to consis t of the p + 1 points P0 = (0, l ) , P i = (1,1), 

••• , P = (p - 1, 1), P = (1, 0) together with the collection of all d i rected edges 
P — _L °° 

P. — P . T , where P.T is the unique point which is l inearly dependent upon the 
ma t r ix product P.U. (Contrast this with, for example, [5 ] . ) Byway of i l l u s t r a -
tion, R(5) consis ts of the 1-cycle P2 —* P2 and the 5-cycle P 0 - * Pj - * P 3 - * P 4 

-»- P -— P0. In general , since this graph i s determined by a one-to-one cor respond-
ence, it follows that R(p) consists of a collection of disjoint cycles . (See for 
example [14 J pp. 25-27.) F u r t h e r m o r e , i t is c lear that P. belongs to a 1-cycle 
(or in other words is a fixed point under the correspondence) if and only if P. is a 
cha rac te r i s t i c vector of U modulo p. Moreover, suppose that P. belongs to an 
a -cyc le with a > 1. Since {P . , P . U} is a l inearly independent set , it follows that 
P. Ua = s P . (mod p) implies U = si (modp) , which means that a(p)\a. Thus, 
since obviously a\a(p)} a = a(p). That i s , R(p) consis ts of a collection o f l - c y c l e s 
and a(p)-cycles . Consequently, #(p)|(p + 1 - t) ,where t is the number o f l - c y c l e s 
of R(p). But t is also the number of linearly independent characteristic vectors 
of U modulo p , or equivalently the number of distinct roots modulo p of the mini -
mum polynomial X2 - X - 1 of U. Since the discr iminant of this quadratic is 5, it 
follows that t i s 0, 1, or 2 according as the Legendre symbol (5/p) is - 1 , 0, or 1. 
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That i s , <*(p)|(p-(5/p)), which means that u p " ( 5 / / p ) = si and Up = sU ( 5 / / p ) (mod p), 

for some integer s depending upon p. Now, considering the t r ace of each of the 

m a t r i c e s in this las t congruence, t r U5 = 2s (mod 5) and t r U = (5/p)s (modp^5) . 
But. since U U I implies U = U - I (mod p), we have - t r U = t r Up - 2 
and t r . t r = 1 (mod p). Therefore U5 =. 31 (mod 5). and 

U P " < 5 / P ) S (5/p)I (mod p £ 5) , 

which es tabl ishes proper ty (v). As a corol lary we obtain the well-known congruence 
u = (5/p) (mod p). Also, it is of in teres t to add that, by the quadratic reciproci ty 
law, we have (5/p) = l i f p = 5 k ± l and (5/p) = -1 if p = 5k ± 2 . 

Thus, by use of the Fibonacci mat r ix , we have established some of the p r inc i -
pal ar i thmet ical p roper t i es of the sequence 0, 1, 1, 2, ••• . Although we may use 
this mat r ix to establ ish many other interest ing proper t ies and identit ies of the 
Fibonacci numbers , we feel that the foregoing is sufficient to i l lus t ra te the appl i -
cation of this tool (at l eas t as far as the ar i thmet ical p roper t i es a r e concerned). 
However, we indicate in conclusion how the idea maybe readily adapted to the study 
of more general l inear r e c u r r e n t sequences. 

Specifically, let x0, x l s . . . , x , ••• be the sequence of in tegers satisfying 
the l inear r e c u r r en c e 

x , = a.]X , n + ••• + a x , n+r l n+r-1 r n 

for n > 0 where x0, ••• , x __1 and al9 . . . , a a re given in tegers . A study of 
this l inear r e c u r r e n t sequence may be made by means of the equation X = X0A , 
where X = (x , ••• , x , ') and n n ' ' n + r - 1 ; 

A = 

0 a ] 

0 a r - 1 

0 ••• l a v 

Indeed, the ar i thmet ical p roper t i es of this sequence maybe investigated by a gener -
alization of the methods suggested by this p resen t paper . In par t icu lar , if m is a 
positive integer such that {X0, ••• , X -} is l inearly independent modulo m, then 
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X ^ = sX0 (mod m) if and only if A n = si (mod m). Fu r the rmore , if (m, a ) = 1, then 
the determinant of A is the unit (-1) ~ a modulo m and the sequence of powers 
of this mat r ix reduced modulo m is periodic. That i s , under these assumptions, 
the periodic proper t ies of the sequence of integers reduced modulo m maybe identi-
fied with those of the sequence I, A, • • • , A ,• • • reduced modulo m. For example, 
we have that (ii) above is a special case of the equation 

6(m) = a(m)/3(m) = (r, (3(m)) [ y(m)9a(m) ] , 

where r i s the order of the r e c u r r e n c e , 7(m) is the exponent of the determinant 
of A modulo m, and a(m), /3(m), and <5(m) are obvious extensions of the defini-
t ions above. 
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