THE FIBONACCI MATRIX MODULO m~
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In this paper we investigate some of the arithmetical properties of the famous
Fibonacci sequence by use of elementary matrix algebra, We believe the approach
to be conceptual and, at least in part, novel, Thus, it is our purpose to explore
the pedagogical advantages of matrix methods for problems of this kind as well as
to provide a refreshing appreciation of the arithmetical properties themselves, At
the conclusion of the paper we also indicate how the methods may be appliedto other
linear recurrent sequences.

We begin by considering the following example, Suppose that the Iibonacci

sequence

0, 1, 1, 2, 3,5, 8, 13,

A

1, 34, 55, 89, 144, «..
is reduced modulo 8:
0, 1, 1, 2. 3, 5, 0, 5. 5, 2, 7, 1, 0, 1, 1, ==

We observe that the reduced sequence is periodic., Indeed, the 12 terms of the
period form two sets of 6 terms each, the terms of the second half being 5 times
the corresponding terms of the first half, We say that the Fibonacci sequence re-
duced modulo 8 is of period 12 and restricted period 6 with multiplier 5, Also, we
observe that the multiplier is of exponent 2 modulo 8,

More generally, let ug, uy, «-., U, e be the FFibonacci sequence of integers
satisfying u =u +u  for n =0 with (u,, uy) = (0, 1). Given any integer

n+2 n+1 n
m = 1 we provide below an elementary proof of the fact that there is a positive

integer n such that (un, u ) = (0, 1) (mod m). The least such integer d&m) is

n+1
called the period of the Fibonacci sequence modulo m. The least positive integer n

such that (un, ) =s(0, 1) (mod m), where s is some integer, is called the

u
n+1

restricted period «(m) of the sequence modulo m, If (u ) = s(m) (0.1)

@ (m)’ uw(myl
(mod m), 0 = s(m) < m, then s(m) is called the multiplier ol the Fibonacci sc-

quence modulo m. Obviously s(m) = (mod m). TFinally, we denote the

u;w(m)‘l
exponent modulo m of the multiplier s(m) by p(m).
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By direct calculation we obtain the following table:

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
am) 3 4 6 5 12 8 6 12 15 10 12 7 24 20 12 9 12 18
Bm) 1 2 1 4 2 2 2 2 4 1 2 4 2 2 2 4 2 1

8(m) 3 8 6 20 24 16 12 24 60 10 24 28 48 40 24 36 24 18

The results of this table illustrate several interesting arithmetical properties.
In fact, if (a,b) and[a,b] denote the greatest common divisor and the leastcom-
mon multiple, respectively, of the integers a and b, then we propose to estab-
lish the following:

(i) m iun if and only if «(m) ]n, and miun, mf(u - 1) if and only if 6(m) | n;

(ii) ¢(m) = o(m)B(m) = (2, B(m)) [’y(m),a(m)], WQZi‘e Y2) =1 and Y(m) = 2
for m > 2;
(iii) a([mymy]) = [e(m,), a(m,y)], and 6([m;, my]) = [6(my), 6(my)];
(iv) for every odd prime p there is a positive integer e(p) such that oz(pe)
_ a(p)pmax(o,e—e(p)) and 6(pe) _ 6(p)pmax(0,e—e(p));
) a(p)|(p - (5/p)), where (5/p) is the usual Legendre symbol; furthermore,
if p#5, then 6(p)|(p-1) or &(p)[2(p + 1).

With the possible exception of thelast equation of (ii), which is due to Morgan
Ward, these properties are all well known. Indeed, the fact that reduced sequences
of this type are periodic was observed by J. L. Lagrange in the eighteenth century.
A century later E. Lucas engaged in an extensive study of the arithmetic divisors
of such sequences. These early results together with some of the later develop-
ments in the subject are reviewed in Chapter 17 of Dickson's History [6]. How-
ever, it is suggested that this general background be supplemented with at least
the papers of Carmichael [3], Lehmer [11], and Ward [19]. (See also[4, 7, 8,
9, 10, 17, 20, 21].)

Furthermore, since the main purpose of this present paper is to indicate the
use of matrix algebra for the study of linear recurrence relations, we also remark
that such techniques are certainly not new. (See for example[1, 13, 16, 18].) In
fact, some of the arithmetical properties of linear recurrent sequences have been
studied by means of matrices. (See for example [ 2, 12, 15].) It is our aim tonow

indicate some of the further possibilities of this method.
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We begin by introducing the main tool of our discussion. Specifically, we
view the linear recurrence above as defining a mapping of the orderedpair (un_l,un)
tu, it is clear that this

wheré

onto the ordered pair (un,un+1 w1 = Yo

mapping is represented by the matrix product (un_l,un)U = (un,u

o[

). Since u

n+1)’

n
Furthermore, by induction on n, we observe that (un’un+l) = (0, 1)U and

u u
n n-1 n
U = u u
n n+1l

Because of these results we call U the Fibonaccimatrix,

From the foregoing it is evident that (un,u (0, 1) (mod m) if and only

) =
it U™ is congruent (elementwise) modulo m to thI:;dentity matrix, Thus, the study
of the period of the Fibonacci sequence modulo m is equivalent to the study of the
period of the sequence I, U, U?%, «e- Un, reduced modulo m., In particular,
since there are only a finite number of distinct matrices in this reduced sequence,
it follows that there are integers k and n such that Ukﬂ1 is congruent to Uk
with k +n > k = 0. But since the determinant of U is the unit -1, this means
that for some positive integer n, U" =1 (mod m). Thus, there exists a least
such positive integer n, which is in fact &(m) as defined above. Also, it isclear
that every such n is an integral multiple of é(m). That is, Ut =1 (mod m) if
and only if 6(m)|n, which is equivalent to the second statement of (i).

By a similar argument we have (un, u = s(0, 1) (mod m) if and only if

)
n+1
u" = sl (mod m). Indeed, Ut is congruent to a scalar matrix modulo m if and
only if a(m)|n, where a(m) is the restricted period defined above. This result is
equivalent to the first part of (i).

Furthermore, we have

Ua(m) = s(m) I (mod m) ,

where the multiplier s(m) is of exponent g(m) modulo m. Since Ua(m)’g(m)
= s(m)B(m) I =1 (modm), 6(m)|a(m)B(m). On the other hand, since itis evidentthat
a(m)] 6(m), we have by a similar argument that A(m)|d(m)/c(m). Thus, &(m)

= a(m)B8(m), which establishes the first equation of (ii).
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Also, since the determinant of U is -1, we have from the matrix congruence

above that

a(m) _

(-1) (s(m))? (mod m)

Hence, these congruent integers have the same exponent modulo m. Specifically,

7m) —_ __B(m)
(7(m), a(m)) (2,B(m)) ’

where 7(m) is the exponent of -1 modulo m. Tnatis,

o) = a@m)pm) = @,pm) Jm ik,

which is clearly equivalent to (ii). In particular, we observe that &(m) is even for
m > 2 and that B(m)]|4.
We now demonstrate the second equation of (iii). We first observe that if

M) _ 1 (mod m') and &m')| 6(m). Thus, since m; and m, both

m'{m, then U
divide [mg, m,], it follows that 6([m;, my]) is a common multiple of 6&(m;) and
6(m,). On the other hand, suppose 6(m;) and &(m,) both divide 6. Since U(5 is
congruent to the identity matrix modulo both m; and m,, the congruence is also
valid modulo [m;, m,]. That is, ([ m;, my]) divides 6 and is therefore the
least common multiple of 6(m;) and &(m,).

We obtain similarly the first equation of (iii). Thus, we observe that both «
and 6 are factorable (1. c. m. multiplicative) functions of the argument m, which
suggests next the consideration of property (iv).

o Therefore, let p be any odd prime and let e be any positive integer. Since
Ué(p ) - I+ peB for some matrix B, Upé(pe) = I+ peB)p = I (mod pe+1). That
is, 6(pe+1)|p 6(pe). But obviously 6(pe) [ é(pe+1). We conclude, since pis a
prime, that 6(pe+1) is either é(pe) or p 6(pe). In particular, 6(pe)/ 6(p) is some
non-negative power of p., Similarly, a(pe)/a/(p) is some non-negative power of p.
Recalling that for any given modulus the ratio of the period to the restricted period

divides 4 and that p is odd, it is immediate from the identity
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ap®) o) _ 0%  op)
o (p) @08 5) " a@)

that a(p)/ep) = 6(°)/ 6(p) and 5 p%) = 8(p)/a ().
Moreover, suppose that 6(p ) ;é 6(p ). Then Ué(p ) - I +p °B  with
B # 0 (mod p). Hence,

e
uPOPT) _ o p¥TIE £ 1 (mod p®TF)

. . 1
That is, if 6(peJr ) = pc‘i(pe), then 6(pe+2) = p6(136+1). Consequently, if e(p)

is thelargest positive e such that 6(pe) = 6(p), then 5(pe) = 6(p) for 1 <e < e(p)

and 6(pe) = pe_e(p)é(p) for e > e(p). Finally, the existence of e(p) is assured

it uoP) =

from a consideration of the alternative: I (mod pe), e =1,2,---, then

50 _

It is of interest to remark that a test [17] with a digital computer has shown

, which is impossible. This completes the proof of @iv).

that e(p) = 1 for all primes p less than 10,000, However, the problem of identi-
fying the exceptional primes p with e(p) > 1 remains unsolved.

Finally, we prove property (v). For every prime p we define the restricted
graph R(p) of U modulo p to consistof the p+ 1 points P, = (0, 1),P; = (1,1),
cee P 17 (p-1,1), P_ = (1,0) together with the collection of all directed edges

Pi —»P}z, , where Pi‘ is the unique point which is linearly dependent upon the
matrix product PiU' (Contrast this with, for example, [5].) By way of illustra-
tion, R(5) consists of the 1-cycle Py — P, and the 5-cycle Py — P, —P;—~ Py
— P_ — P;. In general, since this graph is determined by a one-to-one correspond-
ence, it follows that R(p) consists of a collection of disjoint cycles. (See for
example [14 ] pp. 25-27.) Furthermore, it is clear that Pi belongs to a 1-cycle
(or in other words is a fixed point under the correspondence) if and only if Pi is a
characteristic vector of U modulo p. Moreover, suppose that P. belongs to an
a- cycle with o > 1. Since {P PlU} is a linearly independent set it follows that
PiU = sPi (mod p) implies U= sl (mod p), which means that o p)!a. Thus,
since obviously alap), @ = ap). Thatis, R(p) consists of a collection of 1-cycles
and a(p)-cycles. Consequently, a'(p)l(p + 1 - t),where t is the number of 1-cycles
of R(p). But t is also the number of linearly independent characteristic vectors
of U modulo p, or equivalently the number of distinct roots modulo p of the mini-
mum polynomial 3% - A~ 1 of U, Since the discriminant of this quadratic is 5, it

follows that t is 0, 1, or 2 according as the Legendre symbol (5/p) is -1, 0, or1.
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That is, a(p)| (P - (5/p)), which means that Up—(5/p) = sl and UP = sU(S/p)(mod P),
for some integer s depending upon p. Now, considering the trace of each of the
matrices in thislast congruence, tr U? = 2s (mod 5) and tr uP = (5/p)s (modp#5).
But, since U ! = U -1 implies U = UP - I (mod p), we have -tr UP =tr UP -2
and tr UP = 1 (mod p). Therefore U’ = 31I (mod 5) and

Up-(S/p) = (5/p) 1 (modp # 5),

which establishes property (v). As a corollary we obtainthe wéll—known congruence
u_ = (5/p) (mod p). Also, it is of interest to add that, by the quadratic reciprocity
law, we have (5/p) = 1 if p = 5k+ 1 and (5/p) = -1 if p = 5k+ 2.

Thus, by use of the Fibonacci matrix, we have established some of the princi-
pal arithmetical properties of the sequence 0, 1, 1, 2, «=- . Although we may use
this matrix to establish many other interesting properties and identities of the
Fibonacci numbers, we feel that the foregoing is sufficient to illustrate the appli-
cation of this tool (at least as far as the arithmetical properties are concerned).
However, we indicate in conclusion how the idea may be readily adapted to the study
of more general linear recurrent sequences.

Specifically, let xg, Xy, oo, Xy ot be the sequence of integers satisfying

the linear recurrence

= a,;Xx + eee + a4 X
n+r ntr-1 r’n °’

for n > 0 where Xj, se- and aq, ... , @ are given integers. A study of

X
> Tr-1 T
this linear recurrent sequence may be made by means of the equation Xn = X, An,

where Xn = (Xn’ ..o, Xn+r—1) and
0 ees 0a |
T
A _ 1 e Oar—l .
0 «+ lay _|

Indeed, the arithmetical properties of this sequence maybe investigated by a gener-
alization of the methods suggested by this present paper. In particular, if m is a

positive integer such that {XO, ces Xr—l} is linearly independent modulo m, then
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Xn_=_ 5X, (mod m) if and only if A =gl (mod m). Furthermore, if (m, ar) =1, then
the determinant of A is the unit (—1)r_1ar modulo m and the sequence of powers
of this matrix reduced modulo m is periodic. That is, under these assumptions,
the periodic properties of the sequence of integers reduced modulo m may be identi-
fied with those of the sequence I, A, " - -, An,' - ~reducedmodulo m. For example,

we have that (ii) above is a special case of the equation

6(m) = a(m)pB(m) = (r, B(m)) [ Y(m),am)],

where r is the order of the recurrence, ¥ (m) is the exponent of the determinant
of A modulo m, and a(m), B(m), and 6(m) are obvious extensions of the defini-

tions above.

REFERENCES

1. E. T. Bell, Notes on recurring series of the third order, Tohoku Math, J. 24
(1924) 168-184,

2. J. L. Brenner, Linear recurrence relations, Amer. Math. Monthly 61 (1954)

171-173.

R. D. Carmichael, On sequences of integers defined by recurrence relations,

Quart. J. Math. 48 (1920) 343-372.

[o5

4, , A simple principal of unification in the elementary theory
of numbers, Amer. Math, Monthly 36 (1929) 132-143.

5. R. H. Crowell, Graphs of linear transformations over finite fields, J. Soc.
Indust. Appl. Math. 10 (1962) 103-112.

6. L. E. Dickson, History of the theory of numbers, vol. I, Chelsea, New York,
1952.

7. E. B. Dynkin and W. A, Uspenski, Mathematische Unterhaltungen II, Kleine
Erganzungsreihe X1V, Deutscher Verlag der Wissenschaften, Berlin, 1956.

8. H. T. Engstrom, On sequences defined by linear recurrence relations, Trans.
Amer. Math. Soc. 33 (1931) 210-218.

9. M. Hall, An isomorphism between linear recurring sequences and algebraic

rings, Trans., Amer. Math., Soc. 44 (1938) 196-218.



36

10.

11.

12,

1.

14,

15.

16.

17.

18.
19.

20.

21.

THE FIBONACCI MATRIX MODULO m [April 1963]

G. H. Hardy and E. M. Wright, An introduction to the theory of numbers,

4th ed., Oxford University Press, London, 1960, pp. 148-150.

D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math. (2) 31

(1930) 419-448,

N. S. Mendelsohn, Congruence relationships for integral recurrences, Can.

Math. Bull. 5 (1962) 281-284,

E. P, Miles, Jr., Generalized Fibonacci numbers and associated matrices,

Amer. Math., Monthly 67 (1960) 745-752.

O. Ore, Theory of graphs, Amer. Math, Soc. Collog. Publ., vol, 38,

Providence, 1962.

D. W. Robinson, A note on linear recurrent sequences modulo m, submitted

for publication in the Amer, Math, Monthly,

R. A, Rosenbaum, An application of matrices to linear recursion relations,

Amer. Math Monthly 66 (1959) 792-793.

D. D. Wall, Fibonacci series modulo m, Amer, Math. Monthly 67 (1960)

525-532,

M. Ward, The algebra of recurring series, Ann, of Math. (2) 32 (1931) 1-9,
, The characteristic number of a sequence of integers satisfying a

linear recursion relation, Trans. Amer. Math. Soc. 33 (1931) 153-165.

, The arithmetical theory of linear recurring series, Trans. Amer,

Math. Soc. 35 (1933) 600-628.

N. Zierler, Linear recurring sequences, dJ. Soc. Indust. Appl. Math, 7
(1959) 31-48.

Brigham Young University

and

California Institute of Technology

REQUEST

The Fibonacci Bibliographical Research Center desires that any reader finding

a Fibonacci reference senda cardgiving the reference and abrief description of the

contents, Please forward all such information to:

Fibonacci Bibliographical Research Center,
Mathematics Department,

San Jose State College,

San Jose, Calif,



