SOME FIBONACCI RESULTS USING FIBONACCI-TYPE SEQUENCES

I. DALE RUGGLES, SAN JOSE STATE COLLEGE

The elements of the Fibonacci sequence satisfy the recursion formula, F_{n+1} = $F_n + F_{n-1}$, where $F_0 = 0$ and $F_1 = 1$. Let us define an F-sequence as one for which the recursion formula $u_{n+1} = u_n + u_{n-1}$ holds for the elements u_n of the sequence.

Suppose $\{u_n\}$ and $\{v_n\}$ are two F-sequences. Then a linear combination, $\{cu_n + dv_n\}$, is also an F-sequence. If the determinant

$$\begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \neq 0$$
,

then by an application of a theorem from algebra, every F-sequence can be expressed as a unique linear combination of the F-sequences $\{u_n\}$ and $\{v_n\}$.

Consider the sequence 1, γ , γ^2 , γ^3 , This will be an F-sequence if $\gamma^{n+1} = \gamma^n + \gamma^{n-1}$ for all integers n; that is, for γ such that $\gamma^2 = \gamma + 1$. This equation has solutions which we will denote by $\beta = \frac{1+\sqrt{5}}{2}$ and $\alpha = \frac{1-\sqrt{5}}{2}$. Thus, the α -sequence 1, α , α^2 , ... and the β -sequence 1, β , β^2 , are F-sequences. These can be extended to include negative integer exponents as well. \mathbf{S}

$$\begin{vmatrix} \beta & \beta^2 \\ \alpha & \alpha^2 \end{vmatrix} = \beta - \alpha = \sqrt{5}$$

every F-sequence can be written as a unique linear combination of the α -sequence and the β -sequence. (Note that $\alpha + \beta = 1$ and $\alpha\beta = -1$.)

In particular this applies to the Fibonacci sequence. From the equations

$$F_1 = 1 = c\alpha + d\beta$$

 $F_2 = 1 = c\alpha^2 + d\beta^2$

one finds that $c = -1/\sqrt{5}$ and $d = 1/\sqrt{5}$. Thus,

$$F_n = \frac{\beta^n - \alpha^n}{\beta - \alpha} = \frac{\beta^n - \alpha^n}{\sqrt{5}}$$

SOME FIBONACCI RESULTS

The F-sequence with $\rm L_1$ = 1 and $\rm L_2$ = 3 is known as the Lucas sequence. In the case of the Lucas sequence,

$$L_n = \beta^n + \alpha^n$$

The α - and β -sequences can be used to prove many well-known relations involving Fibonacci numbers, Lucas numbers, and general F-sequences: 1. Since

$$\mathbf{F}_{\mathbf{n}} = \frac{\beta^{\mathbf{n}} - \alpha^{\mathbf{n}}}{\beta - \alpha}$$

and $L_n = \beta^n + \alpha^n$ then it follows immediately that

since

$$F_n \cdot L_n = \frac{\beta^{2n} - \alpha^{2n}}{\beta - \alpha} = F_{2n}$$

2. Since $\beta^{n+1} + \beta^{n-1} = \beta^n (\beta + \beta^{-1}) = \beta^n (\beta - \alpha)$ and $\alpha^{n+1} + \alpha^{n-1} = \alpha^n (\alpha - \beta)$, it follows that $\beta^{n+1} - \alpha^{n+1} + \beta^{n-1} - \alpha^{n-1} = (\beta - \alpha)(\beta^n + \alpha^n)$; thus $L_n = F_{n+1} + F_{n-1}$. Also, $L_{n+1} + L_{n-1} = 5F_n$ can be similarly shown. 3. Let $\{u_n\}$ be an F-sequence, such that $u_n = c\alpha^n + d\beta^n$. Then the determinant

$$u_{n+1} u_n$$

 $u_n u_{n-1}$

can be simplified as follows:

$$\begin{aligned} \mathbf{u}_{n+1} & \mathbf{u}_{n} \\ \mathbf{u}_{n} & \mathbf{u}_{n-1} \end{aligned} = \begin{vmatrix} \mathbf{c}\alpha^{n+1} + \mathbf{d}\beta^{n+1} & \mathbf{c}\alpha^{n} + \mathbf{d}\beta^{n} \\ \mathbf{c}\alpha^{n} + \mathbf{d}\beta^{n} & \mathbf{c}\alpha^{n-1} + \mathbf{d}\beta^{n-1} \end{vmatrix} \\ &= \mathbf{c}\mathbf{d} \begin{vmatrix} \alpha^{n+1} & \beta^{n} \\ \alpha^{n} & \beta^{n-1} \end{vmatrix} + \mathbf{c}\mathbf{d} \begin{vmatrix} \beta^{n+1} & \alpha^{n} \\ \beta^{n} & \alpha^{n-1} \end{vmatrix} \\ &= (-1)^{n+1} 5 \mathbf{c}\mathbf{d} . \end{aligned}$$

In particular,

$$\begin{vmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{vmatrix} = (-1)^n .$$

4. $F_{n+p}^2 - F_{n-p}^2 = F_{2n} \cdot F_{2p}$ for all p and n. Consider $F_{n+p} + F_{n-p}$. Then,

$$\begin{aligned} \mathbf{F}_{\mathbf{n}+\mathbf{p}} + \mathbf{F}_{\mathbf{n}-\mathbf{p}} &= \frac{\beta^{\mathbf{n}+\mathbf{p}} - \alpha^{\mathbf{n}+\mathbf{p}}}{\beta - \alpha} + \frac{\beta^{\mathbf{n}-\mathbf{p}} - \alpha^{\mathbf{n}-\mathbf{p}}}{\beta - \alpha} \\ &= \frac{\beta^{\mathbf{n}} (\beta^{\mathbf{p}} + \beta^{-\mathbf{p}}) - \alpha^{\mathbf{n}} (\alpha^{\mathbf{p}} + \alpha^{-\mathbf{p}})}{\beta - \alpha} \\ &= \frac{(\beta^{\mathbf{p}} + \beta^{-\mathbf{p}}) [\beta^{\mathbf{n}} + (-1)^{\mathbf{p}+1} \alpha^{\mathbf{n}}]}{\beta - \alpha} \text{ since } \alpha^{-\mathbf{p}} = (-1)^{\mathbf{p}} \beta^{\mathbf{p}} \\ &= \frac{[\beta^{\mathbf{n}} + (-1)^{\mathbf{p}+1} \alpha^{\mathbf{n}}] [\beta^{\mathbf{p}} + (-1)^{\mathbf{p}} \alpha^{\mathbf{p}}]}{\beta - \alpha} \end{aligned}$$

Therefore, if p is even, $F_{n+p} + F_{n-p} = F_n \cdot L_p$ and if p is odd, $F_{n+p} + F_{n-p} = L_n \cdot F_p$. Also, $F_n - F_n = L_n \cdot F_n$ for p even and $F_n - F_n = F_n \cdot L_n$ for

Also, $F_{n+p} - F_{n-p} = L_n \cdot F_p$ for p even and $F_{n+p} - F_{n-p} = F_n \cdot L_p$ for p odd. Thus, $F_{n+p}^2 - F_{n-p}^2 = F_{2n} \cdot F_{2p}$ for all p and n. 5. Let us simplify $F_3 + F_6 + \cdots + F_{3n}$. Since the α -sequence and the β -sequence are also geometric sequences it follows that

$$\beta^{3} + \cdots + \beta^{3n} = \frac{\beta^{3}(\beta^{3n} - 1)}{\beta^{3} - 1}$$

and

$$\alpha^{3} + \cdots + \alpha^{3n} = \frac{\alpha^{3}(\alpha^{3n} - 1)}{\alpha^{3} - 1}$$

Thus,
$$F_3 + F_6 + \cdots + F_{3n} = \frac{-\beta^{3n} + \alpha^{3n} + \beta^3 - \alpha^3 - \beta^{3n+3} + \alpha^{3n+3}}{(-\alpha^3 - \beta^3)(\beta - \alpha)}$$
$$= \frac{F_{3n+3} + F_{3n} - F_3}{L_3}$$
.

SOME FIBONACCI RESULTS

6. As another example consider $F_1 + 2 F_2 + \dots + n F_n$, n positive. Now

$$\beta + 2\beta^{2} + \cdots + n\beta^{n} = \beta \left[\frac{n\beta^{n-1} - \beta^{n} + 1}{\alpha^{2}} \right]$$
$$= n\beta^{n+2} - \beta^{n+3} + \beta^{3}$$

 since

$$1 + 2x + \cdots + nx^{n-1} = \frac{d}{dx} \left[\frac{x(x^n - 1)}{(x - 1)} \right]$$

Also, $\alpha + 2\alpha^2 + \cdots + n\alpha^n = n\alpha^{n+2} - \alpha^{n+3} + \alpha^3$. Therefore, $F_1 + 2F_2 + \cdots + nF_n = nF_{n+2} - F_{n+3} + F_3$. Note that a similar result holds for a general F-sequence. 7. Let us consider some results that utilize the binomial theorem. Since

$$\beta^{n} = (1 - \alpha)^{n} = \sum_{j=0}^{n} {n \choose j} (-1)^{j} \alpha^{j}$$

and

$$\alpha^{n} = (1 - \beta)^{n} = \sum_{j=0}^{n} {n \choose j} (-1)^{j} \beta^{j}$$

it follows that

$$\beta^{n} - \alpha^{n} = \sum_{j=0}^{n} {n \choose j} (-1)^{j+1} (\beta^{j} - \alpha^{j}) ;$$

hence,

$$F_n = \sum_{j=0}^n {\binom{n}{j}} (-1)^{j+1} F_j$$
.

Also,

$$\mathbf{L}_{n} = \sum_{j=0}^{n} {\binom{n}{j}} (-1)^{j} \mathbf{L}_{j}$$

8. Again using the binomial theorem,

$$\alpha^{2n} = (1+\alpha)^n = \sum_{j=0}^n \binom{n}{j} \alpha^j$$

and

$$\beta^{2n} = (1+\beta)^n = \sum_{j=0}^n \binom{n}{j} \beta^j \quad \cdot$$

Therefore

$$\mathbf{F}_{2n} = \sum_{j=0}^{n} {n \choose j} \mathbf{F}_{j} ;$$

also

$$\mathbf{L}_{2n} = \sum_{j=0}^n \binom{n}{j} \mathbf{L}_j \quad .$$

If $\,\left\{\boldsymbol{u}_n^{}\right\}$ is a general $\,$ F-sequence, it also follows that

$$\mathbf{u}_{2n} = \sum_{j=0}^{n} \binom{n}{j} \mathbf{u}_{j} \quad .$$

9. As a final example to illustrate the usefulness of the α - and β -sequences in establishing Fibonacci relations we will derive the result

$$\mathbf{F}_{\mathbf{n}} = \mathbf{F}_{\mathbf{n}-\mathbf{p}+1} \mathbf{F}_{\mathbf{p}} + \mathbf{F}_{\mathbf{n}-\mathbf{p}} \mathbf{F}_{\mathbf{p}-1}$$

for all n and p. First, from

$$\beta^{\mathbf{p}}\beta^{\mathbf{n}-\mathbf{p}-1} + \beta^{\mathbf{p}-1}\beta^{\mathbf{n}-\mathbf{p}} = \beta^{\mathbf{n}+1} + \beta^{\mathbf{n}-1} = \beta^{\mathbf{n}}(\beta - \alpha)$$

and

$$\beta^{p} \alpha^{n-p+1} + \beta^{p-1} \alpha^{n-p} = 0$$

we obtain

$$\beta^{n} = \beta^{p} F_{n-p+1} + \beta^{p-1} F_{n-p}$$

Similarly, one can show that

$$\alpha^{n} = \alpha^{p} F_{n-p+1} + \alpha^{p-1} F_{n-p}$$

It then follows that $\ F_n=F_p\,F_{n-p+1}+F_{p-1}\,F_{n-p}$ and if $\{u_n\}$ is an F-sequence, then

$$u_n = u_p F_{n-p+1} + u_{p-1} F_{n-p}$$

Note that if q = n - p + 1, then $u_{p+q-1} = u_p F_q + u_{p-1} F_{q-1}$. Since $\beta^n - \alpha^n = \sqrt{5} F_n$ and $\beta^n + \alpha^n = L_n$, it follows that $\beta^n = \frac{L_n + \sqrt{5} F_n}{2}$

and

$$\alpha^{n} = \frac{L_{n} - \sqrt{5} F_{n}}{2}$$

HINTS TO BEGINNERS' CORNER PROBLEMS (See page 59)

1.1 Examine $\frac{n}{p}$.

1.2 Use identity III.

1.3 Notice that p, p + 1, p + 2 are three consecutive integers. Since p > 3 is an odd prime, p + 1 is even. Why must p + 1 be a multiple of 3?

 $1.4 \quad 2^{5 \cdot 7} - 1 = (2^5)^7 - (1)^7 = (2^5 - 1) \left[(2^5)^6 + (2^5)^5 + \dots + (2^5) + 1 \right].$

1.5 If N is composite, then by T1 it must have a prime factor p. This factor must be one of the following: 2, 3, 5, 7, \cdots , p_n . Thus pN and p|(2·3·5 \cdots p_n).