SOME FIBONACCI RESULTS USING FIBONACCI-TYPE SEQUENCES

\author{

1. Dale ruggles, San Jose State College
}

The elements of the Fibonacci sequence satisfy the recursion formula, $\mathrm{F}_{\mathrm{n}+1}$ $=F_{n}+F_{n-1}$, where $F_{0}=0$ and $F_{1}=1$. Let us define an F-sequence as one for which the recursion formula $u_{n+1}=u_{n}+u_{n-1}$ holds for the elements u_{n} of the sequence.

Suppose $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are two F-sequences. Then a linear combination, $\left\{c u_{n}+d v_{n}\right\}$, is also an F-sequence. If the determinant

$$
\left|\begin{array}{ll}
\mathrm{u}_{1} & \mathrm{u}_{2} \\
\mathrm{v}_{1} & \mathrm{v}_{2}
\end{array}\right| \neq 0
$$

then by an application of a theorem from algebra, every F-sequence can be expressed as a unique linear combination of the F-sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$.

Consider the sequence $1, \gamma, \gamma^{2}, \gamma^{3}, \ldots$. This will be an F-sequence if $\gamma^{\mathrm{n}+1}=\gamma^{\mathrm{n}}+\gamma^{\mathrm{n}-1}$ for all integers n ; that is, for γ such that $\gamma^{2}=\gamma+1$. This equation has solutions which we will denote by $\beta=\frac{1+\sqrt{5}}{2}$ and $\alpha=\frac{1-\sqrt{5}}{2}$. Thus, the α-sequence $1, \alpha, \alpha^{2}, \ldots$ and the β-sequence $1, \beta, \beta^{2}$, are F -sequences. These can be extended to include negative integer exponents as well.

Since

$$
\left|\begin{array}{ll}
\beta & \beta^{2} \\
\alpha & \alpha^{2}
\end{array}\right|=\beta-\alpha=\sqrt{5}
$$

every F -sequence can be written as a unique linear combination of the α-sequence and the β-sequence. (Note that $\alpha+\beta=1$ and $\alpha \beta=-1$.)

In particular this applies to the Fibonacci sequence. From the equations

$$
\begin{aligned}
& \mathrm{F}_{1}=1=\mathrm{c} \alpha+\mathrm{d} \beta \\
& \mathrm{~F}_{2}=1=\mathrm{c} \alpha^{2}+\mathrm{d} \beta^{2}
\end{aligned}
$$

one finds that $\mathrm{c}=-1 / \sqrt{5}$ and $\mathrm{d}=1 / \sqrt{5}$. Thus,

$$
\mathrm{F}_{\mathrm{n}}=\frac{\beta^{\mathrm{n}}-\alpha^{\mathrm{n}}}{\beta-\alpha}=\frac{\beta^{\mathrm{n}}-\alpha^{\mathrm{n}}}{\sqrt{5}}
$$

The F -sequence with $\mathrm{L}_{1}=1$ and $\mathrm{L}_{2}=3$ is known as the Lucas sequence. In the case of the Lucas sequence,

$$
\mathrm{L}_{\mathrm{n}}=\beta^{\mathrm{n}}+\alpha^{\mathrm{n}} .
$$

The α - and β-sequences can be used to prove many well-known relations involving Fibonacci numbers, Lucas numbers, and general F-sequences:

1. Since

$$
\mathrm{F}_{\mathrm{n}}=\frac{\beta^{\mathrm{n}}-\alpha^{\mathrm{n}}}{\beta-\alpha}
$$

and $\mathrm{L}_{\mathrm{n}}=\beta^{\mathrm{n}}+\alpha^{\mathrm{n}}$ then it follows immediately that
since

$$
\mathrm{F}_{\mathrm{n}} \cdot \mathrm{~L}_{\mathrm{n}}=\frac{\beta^{2 \mathrm{n}}-\alpha^{2 \mathrm{n}}}{\beta-\alpha}=\mathrm{F}_{2 \mathrm{n}}
$$

2. Since $\beta^{\mathrm{n}+1}+\beta^{\mathrm{n}-1}=\beta^{\mathrm{n}}\left(\beta+\beta^{-1}\right)=\beta^{\mathrm{n}}(\beta-\alpha)$ and $\alpha^{\mathrm{n}+1}+\alpha^{\mathrm{n}-1}=\alpha^{\mathrm{n}}(\alpha-\beta)$, it follows that $\beta^{\mathrm{n}+1}-\alpha^{\mathrm{n}+1}+\beta^{\mathrm{n}-1}-\alpha^{\mathrm{n}-1}=(\beta-\alpha)\left(\beta^{\mathrm{n}}+\alpha^{\mathrm{n}}\right)$; thus $\mathrm{L}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}+1}+\mathrm{F}_{\mathrm{n}-1}$. Also, $\mathrm{L}_{\mathrm{n}+1}+\mathrm{L}_{\mathrm{n}-1}=5 \mathrm{~F}_{\mathrm{n}}$ can be similarly shown.
3. Let $\left\{u_{n}\right\}$ be an F-sequence, such that $u_{n}=c \alpha^{n}+d \beta^{n}$. Then the determinant

$$
\left|\begin{array}{ll}
u_{n+1} & u_{n} \\
u_{n} & u_{n-1}
\end{array}\right|
$$

can be simplified as follows:

$$
\begin{aligned}
\left|\begin{array}{ll}
u_{n+1} & u_{n} \\
u_{n} & u_{n-1}
\end{array}\right| & =\left|\begin{array}{cc}
c \alpha^{n+1}+d \beta^{n+1} & c \alpha^{n}+d \beta^{n} \\
c \alpha^{n}+d \beta^{n} & c \alpha^{n-1}+d \beta^{n-1}
\end{array}\right| \\
& =c d\left|\begin{array}{cc}
\alpha^{n+1} & \beta^{n} \\
\alpha^{n} & \beta^{n-1}
\end{array}\right|+c d\left|\begin{array}{ll}
\beta^{n+1} & \alpha^{n} \\
\beta^{n} & \alpha^{n-1}
\end{array}\right| \\
& =(-1)^{n+1} 5 c d .
\end{aligned}
$$

In particular,

$$
\left|\begin{array}{cc}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right|=(-1)^{n}
$$

4. $\mathrm{F}_{\mathrm{n}+\mathrm{p}}^{2}-\mathrm{F}_{\mathrm{n}-\mathrm{p}}^{2}=\mathrm{F}_{2 \mathrm{n}} \cdot \mathrm{F}_{2 \mathrm{p}}$ for all p and n . Consider $\mathrm{F}_{\mathrm{n}+\mathrm{p}}+\mathrm{F}_{\mathrm{n}-\mathrm{p}}$. Then,

$$
\begin{aligned}
\mathrm{F}_{\mathrm{n}+\mathrm{p}}+\mathrm{F}_{\mathrm{n}-\mathrm{p}} & =\frac{\beta^{\mathrm{n}+\mathrm{p}}-\alpha^{\mathrm{n}+\mathrm{p}}}{\beta-\alpha}+\frac{\beta^{\mathrm{n}-\mathrm{p}}-\alpha^{\mathrm{n}-\mathrm{p}}}{\beta-\alpha} \\
& =\frac{\beta^{\mathrm{n}}\left(\beta^{\mathrm{p}}+\beta^{-\mathrm{p}}\right)-\alpha^{\mathrm{n}}\left(\alpha^{\mathrm{p}}+\alpha^{-\mathrm{p}}\right)}{\beta-\alpha} \\
& =\frac{\left(\beta^{\mathrm{p}}+\beta^{-\mathrm{p}}\right)\left[\beta^{\mathrm{n}}+(-1)^{\mathrm{p}+1} \alpha^{\mathrm{n}}\right]}{\beta-\alpha} \text { since } \alpha^{-\mathrm{p}}=(-1)^{\mathrm{p}}{ }_{\beta}^{\mathrm{p}} \\
& =\frac{\left[\beta^{\mathrm{n}}+(-1)^{\mathrm{p}+1} \alpha^{\mathrm{n}}\right]\left[\beta^{\mathrm{p}}+(-1)^{\mathrm{p}} \alpha^{\mathrm{p}}\right]}{\beta-\alpha}
\end{aligned}
$$

Therefore, if p is even, $F_{n+p}+F_{n-p}=F_{n} \cdot L_{p}$ and if p is odd, $F_{n+p}+F_{n-p}$ $=L_{n} \cdot F_{p}$.

Also, $F_{n+p}-F_{n-p}=L_{n} \cdot F_{p}$ for p even and $F_{n+p}-F_{n-p}=F_{n} \cdot L_{p}$ for p odd. Thus, $\mathrm{F}_{\mathrm{n}+\mathrm{p}}^{2}-\mathrm{F}_{\mathrm{n}-\mathrm{p}}^{2}=\mathrm{F}_{2 \mathrm{n}} \cdot \mathrm{F}_{2 \mathrm{p}}$ for all p and n .
5. Let us simplify $\mathrm{F}_{3}+\mathrm{F}_{6}+\cdots+\mathrm{F}_{3 \mathrm{n}}$. Since the α-sequence and the β sequence are also geometric sequences it follows that

$$
\beta^{3}+\cdots+\beta^{3 \mathrm{n}}=\frac{\beta^{3}\left(\beta^{3 \mathrm{n}}-1\right)}{\beta^{3}-1}
$$

and

$$
\alpha^{3}+\cdots+\alpha^{3 \mathrm{n}}=\frac{\alpha^{3}\left(\alpha^{3 \mathrm{n}}-1\right)}{\alpha^{3}-1}
$$

Thus, $\quad \mathrm{F}_{3}+\mathrm{F}_{6}+\cdots+\mathrm{F}_{3 \mathrm{n}}=\frac{-\beta^{3 n}+\alpha^{3 n}+\beta^{3}-\alpha^{3}-\beta^{3 n+3}+\alpha^{3 n+3}}{\left(-\alpha^{3}-\beta^{3}\right)(\beta-\alpha)}$

$$
=\frac{F_{3 n+3}+F_{3 n}-F_{3}}{L_{3}}
$$

6. As another example consider $\mathrm{F}_{1}+2 \mathrm{~F}_{2}+\cdots+\mathrm{n} \mathrm{F}_{\mathrm{n}}$, n positive. Now

$$
\begin{aligned}
\beta+2 \beta^{2}+\cdots+\mathrm{n} \beta^{\mathrm{n}} & =\beta\left[\frac{\mathrm{n} \beta^{\mathrm{n}-1}-\beta^{\mathrm{n}}+1}{\alpha^{2}}\right] \\
& =\mathrm{n} \beta^{\mathrm{n}+2}-\beta^{\mathrm{n}+3}+\beta^{3}
\end{aligned}
$$

since

$$
1+2 x+\cdots+n x^{n-1}=\frac{d}{d x}\left[\frac{x\left(x^{n}-1\right)}{(x-1)}\right]
$$

Also, $\alpha+2 \alpha^{2}+\cdots+n \alpha^{n}=n \alpha^{\mathrm{n}+2}-\alpha^{\mathrm{n}+3}+\alpha^{3}$. Therefore, $\mathrm{F}_{1}+2 \mathrm{~F}_{2}+\cdots+\mathrm{nF} \mathrm{n}_{\mathrm{n}}$ $=n F_{n+2}-F_{n+3}+F_{3}$. Note that a similar result holds for a general F-sequence.
7. Let us consider some results that utilize the binomial theorem. Since

$$
\beta^{\mathrm{n}}=(1-\alpha)^{\mathrm{n}}=\sum_{\mathrm{j}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{j}}(-1)^{\mathrm{j}} \alpha^{\mathrm{j}}
$$

and

$$
\alpha^{\mathrm{n}}=(1-\beta)^{\mathrm{n}}=\sum_{\mathrm{j}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{j}}(-1)^{\mathrm{j}} \beta^{\mathrm{j}}
$$

it follows that
hence,

$$
\beta^{\mathrm{n}}-\alpha^{\mathrm{n}}=\sum_{\mathrm{j}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{j}}(-1)^{\mathrm{j}+1}\left(\beta^{\mathrm{j}}-\alpha^{\mathrm{j}}\right)
$$

Also,

$$
F_{n}=\sum_{j=0}^{n}\binom{n}{j}(-1)^{j+1} F_{j}
$$

$$
L_{n}=\sum_{j=0}^{n}\binom{n}{j}(-1)^{j} L_{j}
$$

8. Again using the binomial theorem,

$$
\alpha^{2 \mathrm{n}}=(1+\alpha)^{\mathrm{n}}=\sum_{\mathrm{j}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{j}} \alpha^{\mathrm{j}}
$$

and

$$
\beta^{2 \mathrm{n}}=(1+\beta)^{\mathrm{n}}=\sum_{\mathrm{j}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{j}} \beta^{\mathrm{j}} .
$$

Therefore

$$
F_{2 n}=\sum_{j=0}^{n}\binom{n}{j} F_{j} \quad ;
$$

also

$$
L_{2 n}=\sum_{j=0}^{n}\binom{n}{j} L_{j}
$$

If $\left\{u_{n}\right\}$ is a general F-sequence, it also follows that

$$
u_{2 n}=\sum_{j=0}^{n}\binom{n}{j} u_{j}
$$

9. As a final example to illustrate the usefulness of the α - and β-sequences in establishing Fibonacci relations we will derive the result

$$
F_{n}=F_{n-p+1} F_{p}+F_{n-p} F_{p-1}
$$

for all n and p . First, from

$$
\beta^{\mathrm{p}} \beta^{\mathrm{n}-\mathrm{p}-1}+\beta^{\mathrm{p}-1} \beta^{\mathrm{n}-\mathrm{p}}=\beta^{\mathrm{n}+1}+\beta^{\mathrm{n}-1}=\beta^{\mathrm{n}}(\beta-\alpha)
$$

and

$$
\beta^{\mathrm{p}} \alpha^{\mathrm{n}-\mathrm{p}+1}+{ }_{\beta}^{\mathrm{p}-1} \alpha^{\mathrm{n}-\mathrm{p}}=0
$$

we obtain

$$
\beta^{\mathrm{n}}=\beta^{\mathrm{p}} \mathrm{~F}_{\mathrm{n}-\mathrm{p}+1}+\beta^{\mathrm{p}-1} \mathrm{~F}_{\mathrm{n}-\mathrm{p}} .
$$

Similarly, one can show that

$$
\alpha^{\mathrm{n}}=\alpha^{\mathrm{p}} \mathrm{~F}_{\mathrm{n}-\mathrm{p}+1}+\alpha^{\mathrm{p}-1} \mathrm{~F}_{\mathrm{n}-\mathrm{p}} .
$$

It then follows that $F_{n}=F_{p} F_{n-p+1}+F_{p-1} F_{n-p}$ and if $\left\{u_{n}\right\}$ is an F-sequence, then

$$
u_{n}=u_{p} F_{n-p+1}+u_{p-1} F_{n-p}
$$

Note that if $q=n-p+1$, then $u_{p+q-1}=u_{p} F_{q}+u_{p-1} F_{q-1}$.

$$
\begin{gathered}
\text { Since } \beta^{\mathrm{n}}-\alpha^{\mathrm{n}}=\sqrt{5} \mathrm{~F}_{\mathrm{n}} \text { and } \beta^{\mathrm{n}}+\alpha^{\mathrm{n}}=\mathrm{L}_{\mathrm{n}} \text {, it follows that } \\
\beta^{\mathrm{n}}=\frac{\mathrm{L}_{\mathrm{n}}+\sqrt{5} \mathrm{~F}_{\mathrm{n}}}{2}
\end{gathered}
$$

and

$$
\alpha^{\mathrm{n}}=\frac{\mathrm{L}_{\mathrm{n}}-\sqrt{5} \mathrm{~F}_{\mathrm{n}}}{2}
$$

HINTS TO BEGINNERS' CORNER PROBLEMS
(See page 59)
1.1 Examine $\frac{n}{p}$.
1.2 Use identity III.
1.3 Notice that $p, p+1, p+2$ are three consecutive integers. Since $p>3$ is an odd prime: $p-1$ is even. Why must $p+1$ be a multiple of 3 ?
$1 .+2^{5 \cdot 7}-1=\left(2^{5}\right)^{i}-(1)^{7}=\left(2^{5}-1\right)\left[\left(2^{5}\right)^{6}+\left(2^{5}\right)^{5}+\cdots+\left(2^{5}\right)+1\right]$.
1.5 If N is composite, then by $\mathrm{\Gamma} 1$ it must have a prime factor p . This factor must be one of the following: $2,3,5,7, \cdots, p_{n}$. Thus $p_{i} N$ and $p \mid\left(2 \cdot 3 \cdot 5 \cdots p_{n}\right)$.

