ADVANCED PROBLEMS AND SOLUTIONS
EDITED BY VERNER E. HOGGATT, JR., SAN JOSE STATE COLLEGE

H-19 Proposed by Charles R. Wall, Texas Christian University, Ft. Worth
Texas.

’

In the trianglebelow [drawn for the case (1,1, 3)], thetrisectorsofangle,

B, divide side, AC, into segments of length Fn’ Fn+1’ Fn+3' Find:
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H-20 Proposed by Verner E. Hoggatt, Jr., and Charles H. King, San Jose State
College, San Jose, California.

L1 n L
If Q = ( ), show D(eQ ) = e ™ ,
0 0 :

where D(A) is the determinant of matrix A and Ln is the nth Lucas number.
H-21 proposed by Francis D. Parker,University of Alaska,College, Alaska

th

Find the probability, as n approaches. infinity, that the n™ Fibonacci

number, F(n), is divisible by another Fibonacci number (+ F; or F,).
46
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H-22 proposed by Verner E. Hoggatt, Jr.

o0 F- (e}
If Px) = I 1+x')y= 2 Rmx™ |,
i=1 n=0
then show
(i) R(F, - 1) = n
(ii) R(N) > n if N> F, -1

(See first paper of this issue.)

H-23 Proposed by Malcolm H. Tallman, Brooklyn, New York

1, 3, 21, and 55 are Fibonacci numbers, Also,they are triangular '

numbers, What is the next higher number that is common to both series?

SOLUTIONS
- 2 = .
H-3 Show F2n—2 < Fn < FZn—l’ n =3 ;
2
F2n—1 < Ln—l < F2n’ n=4,

where Fn and Ln are the nth Fibonacci and Lucas numbers, respectively.
Solution by Francis D. Parker, University of Alaska.
The identities F2(n) F(@2n - 2) + Fl@m - 2)
and F’(n) = F(2n - 1) - F2(n - 1)
are valid for n = 3 and can be proved from the explicit formulas for F(n).

From these it follows that F(2n - 2) < F%(n) < F@2n ~ 1), n = 3. Again, from

the explicit formulas for L(n) and F(n) it is possible to prove the identities

L’m~1) = F@n - 1)+ F(2n - 3) + 2(-1)‘”JL and LZm - 1) = F(2n) - F(2n - 4)

+ 2(—1)n+1. From these it follows that F(2n - 1) < L%(n - 1) < F(2n), (n =4).

This problem was also solved by Dov Jarden, Jerusalem, Israel.

H-4 Prove the identity:

Pt Forn Foon " ¥ ¥ ¥ - Py Foli By = Frigie
Are there any restrictions on the integral subscripts?
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Solution by J. L. Brown, Jr., Pemnsylvania State University, State College,
Pennsylvania

We shall prove the assertion under the subscript restrictions, r =-1,
s =-1, t = -1, where F_2 = -1, F_1 =1 and Fnz Fn~1+Fn—2 for n = 0.
The proof is by an induction on n,where n= r + s+ t, To show that the re-
sult holds for n = 1 and n = 2, a symmetry argument shows that it suffices
to verify the result for the nine triples (r,s,t) = (1,0,0), (-1,1,1), (3,-1,-1),
-1,2,0), (2,0,0), (1,1,0), (-1,3,0), (2,-1,1) and (4,-1,1).

Now assume as an inductionhypothesis that the result has beenproved for
all n satisfying n =k, where k= 2. Then consider any triple (r,s,t) such
that r+ s+t = k+ 1. Assume without loss of generality that r = max (r, s,t).

Then r = 1 and

A +F F F -F F

el = Frpe1 Feen Foaa rost r-1Tg-1 -1
(Fr Fs+1Ft+1 * Fr—l Fs+1 Ft+l)

+ (Fr_lFSFt+ Fr-—ZFsFt)
- (F

I

rooFe1Fro1 * FrogFeq Fig)

But

LS Fiqg ¥ Fr—lFsFt - P Fs—lFt~1 = F s+t

by the induction hypothesis applied to the triple (r-1,s,t), which has the sum

r-1+s+t = k, Similarly

P Fer1 Pt * P T Fy - FosFe1Fi1 = Frogsnt

by the induction hypothesis applied to the triple (r-2,s,t), which has the sum
r-2+s+t = k-1. Thus

Ar1 = Frgisrt © Frogeset Foiert

as required and the result follows by induction.
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H It F P Frng 7 T
-5 i = . -
( ) {m n] (Fn Fl’l-l e Fl ) (Fnl‘“n Fm"n"l o

- Fy)
then

2|:an] = H:m—an] Ln * [m—l Fn~1] Lm—n ’

where Fn and Ln are the nth Fibonacci and nth Lucas numbers, respectively.
(ii) Show that this generalized binomial coefficient I:m Fn] isalways an

integer,
Solution by J. L. Brown, Jr.

. . o , — . = h=0d . .
(i) The identity Lnfm—nJr Lm_n Fn = ZFm for m = n =0 iseasily ver

ified by induction. Multiplying both sides of the identity by 'anl FIn then

gives the required relation Ln[m—l F1+L, [m-l Fn—l] = 2 Lm Fn} .

From the expression for Fm , it follows that

m-n n 1 =
Fm~oz FH+BFm_nform—n.

Then

[ "]

) [an] = T ) Fm =" [m—an—l] * Bn[m—l Fn]

but [an] = Lm Fn—m]' If we replace n by m-n on the right-hand side of

(*), then we have

(**) [m Fn] = an[:m—l Fm—n—l] * Bm—n[m—l Fm-]ﬂ}

However, [m—lFm-n—l] = [m—an:[ and [m—lFm—n] = [m—an—l] , so that

adding (*) and (**) yields

z[m Fn] (am-n - Bm_n)[m—l Fn—l] " (an * ﬁn)[m—l Fn]

il

Lo . [m—an—l:l + L, [m—an:l as required,
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(ii) A proof of the second part which makes use of relation (*) can be

found on p. 45 of D, Jarden's "Recurring Sequences. "

H-6 Determine the last three digits, in base seven, of the millionth Fibonacci
number, (Series: F; =1, Fy =1, Fy3 = 2, etc.)

Solution by Brother U. Alfred, St. Mary's College, Calif.

The last three digits base seven may be determined if we find the residue
modulo seven cubed of the millionth Fibonacci number.

Seven has a period of 16 and 73 has a period of 72 x 16 = 784,

In 1,000,000, there are a number of complete periods and a partial per-
iod of 400.

For a period of the form 2m(zx + 1) where m = 2, there is a zeroat
the half-period of 392, Also, for a prime or a power of a prime, the adjacent
terms are congruent to -1 modulo the power of the prime. Hence we know that

we have the following series of values:

n Residue (modulo 343)
392 0
393 342
394 342
395 341
397 340
397 338
398 335
399 330
400 322

This expressed tobase seven is (440);, sothat these are the last three digits of

the millionth Fibonacci number expressed in base 7.

L and show that

]

H-7 If Fn is the nth Fibonacci number find lim I}Ji"n

n~* oo

2/\n/ N5 an < L < 2/\n+1/ J5 F2n+1 for

Solution by John L. Brown, Jr.
Let a=(1+ V5 y/2. Then, it is well-known (see, e.g., pp. 22—23 of
"Fibonacci Numbers'" by N. N, Vorobév) that

=1
v
o



1963 ] ADVANCED PROBLEMS AND SOLUTIONS 51

an i )
F -—| < Z forall n = 1
n \/5 2
a 1 n n an
- a 9 1 -
Therefore F \/_ , where Ienl <7 and T F VAN + Qn .

But for n= 1

n

//Za - _n a 1 n /a
~/ 2= N -5 <A =0
2~/5 25 2 N5 n

nV—Zn
_n/a lzy_____Zan+1 <Nn/§?f=—__~a
"\/g 2 - \/3 25 n 2./5
Taking lim , we find 5 3
n= e L=1m, Y& +9 =a .

n—w’ N5 D

Thus L=a:l—;—@

Now, let b = % —Z\ﬁ‘i so that b < 0. Then, since \/SFnz a’ - b for

n = 1, we have

2n _ 2n/ 2n 2n 2n+1/ 2n+1 2n+l _ 2n+l/,
/\/E,F2n = “/a"" - b <a </ a -b = EFZm—l
a

thus the desired inequality follows for all n = 1 on noting that L =

Also solved by Donna Seaman,

H-8 Prove
F121 F%1+1 F %1+1
Fii1 Fhee Fhesls 2(_1)n+1
Firz Thrs  Thea

where Fn is the nth Fibonacei number,

Solution by John Allen Fuchs and Joseph Erbacher, University of Santa Clara,
Santa Clara, California

The squares of the Fibonacci numbers satisfy thelinear homogeneous re-

i i i 2 = oFe 2 _ T2 -
cursion relationship Fn+3 = 2Fn+ + 2Fn+l Fn‘ (See H, W, Gould, Gen
erating Functions for Products of Powers of Fibonacei Numbers, this Quarterly,

Vol. 1, No. 2, p. 2.)
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We may use this recursion formula to substitute for the last row of the

given determinant, Dn, and then apply standard row operations to get

2 2 2
Fn Fn+1 Fn+.2
—|w2 2 )
Dn" Fn+1 Fm+2 I{n+3
2 2_ w2 2 2 _m2 2 2 _ 2
2Fn+1+2Fﬂ Fn—l 2Fn+2+2Fn-!—1 Fn 2Fn+3+2Fn+2 Fn+1
2 2 2
Fn Fn+1 Fn+2
=| F2 2 2 = =
Fn+1 Fn+2 Fn+3 Dn—l :
_F2 w2 w2
Fn—l Fn Fn+1
It follows immediately by induction that D = (_1)n—1 D,. Since Dy = 2, DI1

_ 2(_1)n—1 _ 2(__1)n+1 )

Also solved by Marjorie Bicknell and Dov Jarden.

Continued from p. 80, "Elementary Problems and Solutions"

Then

k+1 k+2 k+1

_ k+2
+ Fk+1p = (Fk+1 + Fk)p + (Fk + Fk_l)p

FlioP

k

k+1 k+1
= p(Fqp + Fyp )+ p*(Fp

k
+ Fk_lp ) .

But
k k-1

k+1 Ky _
p(F ,p + Fp ")+ p(Fp ~+F_;p)=p+pi(modp’+p-1).

. k k+1 k-1 k
Since Fk+1p + ka and ka + Fk—lp are both congruent to 1 (mod p

+p - 1) by the induction hypothesis and p + p? = 1 (mod p?+ p - 1), the de-

2

sired result follows by induction on n .

Also solved by Marjorie R, Bicknell and Donna J, Seaman,




