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Before the main point of this paper can be developed, it is necessary to 
review some elementary facts about the Fibonacci Sequence and Pascal 's 
triangle. 

It is well-known that rectangles exist such that if a full-width square is 
cut from one end, the remaining part has the same proportions as the original 
rectangle. 
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Assuming width to be unity and length x9 we have 
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x 

x - 1 

(1) x - 1 = 0 

The greatest root of (1) is the number <p, called the Golden Ratio, and the 
rectangle defined is the Golden Rectangle of Greek geometry. Each root of (1) 
has the property that its reciprocal is itself diminished by 1, so that 
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Given any two. i n i t i a l in tegra l t e r m s Uj and u2 not both z e r o f a 

Fibonacci Sequence is defined recurs ive ly by 

(2) 
n - 1 n-2 

It i s a well-known proper ty of such sequences that 

l im n+1 <P 

If Uj = 0 and u2 = 1, we have the Fibonacci sequence. 

if a rec tangle i s defined such that when an in tegra l number k of full-

width squa res a r e cut f rom one end, the remain ing p a r t has the s a m e p ropor -

t ions as the original rectangle, then 

(3) ky 1 - 0 

where 'the width i s unity and the length Is y. 
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The rec tangle defined i s a golden-type rec tangle . The roo ts of (3) behave much 

like cps that i s s l / y = y - k. The g rea t e s t root In absolute value of (3) i s the 

l im 
n-^oo 

n+1 

where u = ku ., + u n . In fact. It Is well-known that under ce r t a in con-n n - 1 n-2 9 

ditions F ibonacci - l ike sequences defined by 
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(4) u = au ., + bu 0 
n n - 1 n-2 

given init ial t e r m s ut and u2 not both z e r o , where a and b a r e real., have 

the p roper ty that 

l im n+1 
n-^oo u n 

= a 

where a i s the g r e a t e s t roo t in absolute value of (See [3] ) 

(5) x2 - ax - b = 0 

The condition i s that a and b mus t be such that the roots of (5) a r e not both 

distinct^ and equal in absolute value, 

The above genera l r e su l t can be es tabl ished in the following way: Con™ 
th s i de r sequences such that the n t e r m u sa t i s f ies 

(6) u = cc/1 + d/5n . 

By substi tution In (4), a and (3 can be de te rmined so that sequences (8) will 

sat isfy (4) and be Fibonacci - l ike sequences . We find that the coefficients of c 
in — 9 n—•? 

and d a r e a (a2 - aa - b) and /3 (/32 - a/3~b)s respec t ive ly . Sequences (6), 
t he re fo re , satisfy (4) if a and p a r e roots of (5). 

n-2 On the other handf if a and /5 a r e roots of (5), then ca (a2 - %a - b) 
n—2 

+ d/3 (J32 - a/3 - b) = 0 Is sat isf ied for any choice of c and d0 But then we 
have ca + d/3 = a(ca " + d/5 ~ ) + b(ca + d/3 ). Moreover^ if a =|= fi9 

c and d can be de te rmined given ini t ial t e r m s ut and u2. Hence a sequence 

satisfying (4) sa t i s f ies (6) under the conditions s ta ted. If | a>\ > j p\9 we can 

use (6) to obtain the 

l im n+1 11m ca + d(6/a) 6 

n c + d(p/a) 
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The above limit does not exist, of course, if a = -jS. If the roots of (5) are 
equal3 then we can set 

n , n 
(7) u = ca + nda 
1 ; n . 
and show by arguments similar to those above that (7) is a Fibonacci sequence 
if and only if a is the root of (5) and so>. + 2/3 = 0. But the roots of (5) are 
equal if and only if a = a/2 and b = - a 2 /4 . Therefore all requirements for 
(7) being a Fibonacci sequence are met. It is now possible to solve for c and 
d5 and to show that for sequences (7)9 

lim n+1 
_ a n-*°o u n 

An interesting observation has been made about the array of numerals 
known as Pascal*s Triangle. If a particular set of parallel diagonals is desig-
nated as in Fig. 1, then the sequence resulting from the individual summations 
of the terms of each diagonal is the Fibonacci sequence. [2 ] 

Figure 1 

Therefore, the limit of quotients of sums of terms on these parallel diagonals 
of the triangle is a. We shall now show that some generalizations of this 
connection can be made. 
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To begins we note that the indicated diagonal sums in Fig. 2 are indeed 
the first few terms (except the first) of (4) if nt = 0 and u2 = 1. 

Other sets of parallel diagonals of Fig. 2 also have interesting proper-
ties. It is possible to formalize the definition of the array given as Fig. 25 but 
it will be more efficacious here to simply refer informally to the figure in the 
arguments to follow. We will assume only that a and b are real9 and that 
Fig. 2 is a Generalized Pascal 's Triangle. The row index shall be j , and the 
term index for each row? 65 each ranging over the non - negative integers. 

th th 
The j power of (a + b) is the sum of terms in the j row of Fig. 2. 

Definition 1. A diagonal sum x. of the generalized Pascal 's triangle 
shall be given by 

Lr+lJ 

x. = 
r5 , 1 - 6 0 * 1 ^ 

6-0 

Counting from left to right in Fig. 2, the (<5 + l)th term of the diagonal sum is 
the (6 + l)th term in the (j - r6 )th row of the triangle as 5 ranges over the 
non-negative integers. Hence x. ^ is a function of j and r „ 

Note that the role of r is simply to determine which terms of the t r i -
angle are to be summed. This has the effect of defining a set of parallel diagon-
als for each r. For example3 if r = 1, the first term of x61 is the first 
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t e r m of the sixth row of Figs 2e The second t e r m of x61 i s the second t e r m 

of the fifth row of Fig9 2 , and so on„ If r = 39 the f i r s t t e r m of x63 i s t h e 

f i r s t t e r m of the sixth row of Fig. 2S but the second t e r m of x63 i s the second 

t e r m of the th i rd rowf and so on. When r = 0, x . n i s the sum of t e r m s on the 
.th JO 
3""" row. A sequence {x-j r}. of diagonal sums is uniquely de te rmined by r . 

J ' J th 
Since for j = 0 the (j - r6) row is defined for every r only when 6 = 0, 

x • = 1 for all r . Fur the r 9 x- = a if r > 0. If r = 2. the f i r s t f e w t e r m s 
Or 9 I r > 

of the resu l t ing sequence a r e : 
(1, as a2

? a3 + b5 a4 + 2ab, a5 + 3a2b, • * • ) 

Theorem 1. For sequences {x- } of sums of t e r m s on pa ra l l e l diagon-
j r j 

a ls of the genera l ized P a s c a l ? s t r i ang le , 

(8) 
"jr 

ax,. n . + bx. . n . 0™l)r ( j - r - l ) r 

Proof: j - r - 1 
r+1 J/ j~r(6 + 1 ) - 1 

. ( j - r - l ) r (j~l)r dmmmd \ 

5=0 \ 

j -(5(r+l)b6 

Lr+lJ/ j -r6 -1 

6=1 

Lr+1. 

J-Hr+Dh6 
j - r6 - 1 

6 - 1 

j - r6 - 1 

6=1 

Lr+1Ji 

J+ £ 
' j - T 6 - 1 \ 

6=1 

!aJ-S(r+Db6 

j - r 6 - l 
, j-<5(r+l), 6 j 
aJ v ; b + aJ + 

aj-<5(r+l)ba 

j - 6 ( r + l ) b 6 

but 
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j - r<5 - 1 \ / j - r<5 \ 

6 - 1 ) \ 6 ) 

27 

j -rfi 

and 

so 

( j - r - l ) r 0 - l ) r = a" 

r + l j I / j - r<5 

r f ( \ a / j™r(5 

j , 5 ( r + 1) aj-6(r+l)b<5 
j - r(5 ? 

r(5 

5=1 \ 6 

j ^ ( r + l ) b 6 = 
jr 

In view of Theorem 1, any property of sequences defined recursively by 

(9) u = au 1 + bu -n n-1 n - r -1 

will be a property of sequences of sums of terms on diagonals of the generalized 
Pascal 's triangle. Further s these diagonal sequences will all be of the special 

• s u •- = a : since r + 1 initial terms 
5 r+1 

case ut = 0, u2 = 13 u3 = a,. • • 
are required for (9) to generate a sequence. We note that diagonal sum x 
is u of (9) given the above initial terms. 

(n-2)r 

As In the proof of 



28 A GENERALIZATION OF THE CONNECTION BETWEEN [Oct. 

lim n+1 _ 
n-*-oo u ~ ^ n 

given (2)3 we shall establish the existence of similar limits for the sequences 
defined by (9). If we set 

,., -. n n n n 
(10) un = e0a0 + exat + e2a2 + • •• + e ^ 

then substituting in (9) the coefficients of the e. are 

n - r -1 , r+l r , w . ~ ., , 
ai (a. - aa . - b) (i = 0 , 1 , - • • , r) , 

and (9) is satisfied if the a. are the r + l roots of 

(11) x r + 1 - ax r - b = 0 . 

Conversely, given that the a, are the roots of (11), it follows that sequences 
(9) can be written in the form of (10) if the e. can be determined. One can ob-
tain from the given (r + 1) initial terms (r + 1) equations u^ = eQal+ ejcq 
+ • • • + e or (j = 1, 2, • • • , r + l ) . This set of equations has a non-trivial 
solution for the e. , however, if and only if the a. are distinct. Whether or 
not the terms of sequences defined by (9) can be written in the form of (10) de-
pends, therefore, on whether or not we can determine conditions for the multi-
plicity of the roots of (11). 

Suppose p is a root of (11) where a and b are both not zero. Then 
(11) may be written as (x - p) Q (x) = 0 where 

^ / x r / x r - 1 , x r-2 . x ? r - 3 , , r - 1 
Q(x) = x + (p - a)x + (p - a)px + (p - a)p^x + • • • + (p - a)p 

Clearly p is a multiple root of (11) if and only if it is a root of Q(x) = 0. But 
then it is easily verified that 
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a r 
r + 1 

Now s ince p i s r e a l , at l e a s t all complex roo t s of (11) a r e distinct. 

DeGua's ru le for finding imaginary roots s t a tes that when 2m s u c c e s -

sive t e r m s of an equation a r e absent , the equation has 2m imaginary roo t s ; 

and when 2m - 1 success ive t e r m s a r e absent , the equation has 2m - 2 o r 

2m imaginary roo t s , according as the two t e r m s between which the deficiency 

occu r s have like o r unlike s igns . Accordingly, we see that (11) has at mos t 

t h r ee r e a l r o o t s , s ince t he re a r e r - 1 success ive absent t e r m s and hence at 
r + l r 

l e a s t r - 2 complex roo t s . F u r t h e r , if f(x) = x - ax - b , the two c r i t i -

cal numbers of f a r e z e ro and a r / ( r + l ) . Since f(ar / ( r + l)) i s an ex t r emum 

of f, the g r e a t e s t mult ipl ici ty of any r e a l root of (11) i s two. [ l ] 

If b i s ze ro but a i s not5 then the roo ts of (11) a r e ze ro (of mult ipl ici ty 

r ) , and a. Other c a s e s a r e t r iv ia l . 

If the r e a l roo ts of (11) a re dist inct and #0 i s any root such that \a^ 

> jofj (i = 1,2, • • • , r ) , then 

n+1 n+1 n+1 
l im V i = l im eo^Q + e i " i + ' - + e T * r ' 

n-* o o u n-*co n , n , , n 
n e0a0 + eta t. + ••• + e ^ 

l im e ° a ° + e i » i ( » i / « o ) n + '*' + e
Y

a
T(a

T/aof 

e 0 + e1(alL/a0) + •• • + er(a>T/a>0) 

There fo re — 
n 

It i s c l e a r that a r / ( r + 1) i s a root of (11) if and only if 

r + l r 
b = - * r 

( r + D r + 1 
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Suppose a0 and a^ a r e this root . Then we can se t 

/-lov n , n , n , n 
(12) u n = e 0 a 0 +.ne1of0 + e2a2 + >-• + e^a^ 

and use (9) to find the coefficients of the e.. The coefficient of e. where 
•n—r-T T*+1 T* 

i =|= 1 i s a. (a. - a a . - b) and for e. we have 
1 i i i ' i 

r 
n-r -1 / r+1 r , ^ a ^ ° ^ b ( r + 1) A 

It i s c l e a r that the r equ i r ed condition i s that the a. be the roo t s of (11) and 
r aq?0 + b(r + 1) = o. But with a0 chosen a s above, this i s indeed the case . As 

before , (12) can be used to genera te equations which enable us to find the e. . 
Finally 

l im n+1 
n — oo u n 

exis ts and i s the g r ea t e s t root of (11) in absolute value. 

Since (9) genera tes a r e a l sequence given r e a l ini t ial t e r m s 9 not only i s 

l im n+1 
n-^oo u n 

the g r e a t e s t roo t of (11) in absolute value , but i t m u s t a lso be r e a l . Hence the 

g rea t e s t root in absolute value of (11) mus t be r e a l . 

If a, b , and r in (11) a r e such that two dist inct roots sha re the g r e a t e s t 

absolute value of all roots 5 then i t i s eas i ly shown that no l imi t ex i s t s . 

Employing s imple unit t h e o r e m s , we can prove that 

l im "n+s s .„ l im n+1 
= a n it = cxii 

n-^oo u u n-*oo u u 

n n 

We a r e now able to s ta te that: 



1963] THE FIBONACCI SEQUENCE AND PASCAL'S TRIANGLE 31 

Theorem 2. For all sequences formed by sums of terms on parallel di-
agonals of the generalized Pascal 's triangle9 and for all sequences defined by 
(9) given r + 1 initial te rms, 

lim n+s 
n 

exists and is the greatest root in absolute value of 

r+1 r_ 
x - ax - b = 0 , 

provided this absolute value is not shared by two distinct roots. 
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