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Little seems to be known about series of the form 

OO 

(1) 2 A x F n 

A n 

n=0 
or 

OO 

(2) 2 A x L n 

A n 

n=0 

where the exponents are Fibonacci and Lucas numbers, respectively, defined 
by 

n , n /ox _, a - b T n , , n , , 
(3) F = 7—- , L = a + b , a + b . 
v ' n a - b 9 n ' 

It may therefore be of interest to point out that Fibonacci exponentials are 
intimately related to some generalizations of Her mite polynomials [1]. The 
existence (or non-existence) of certain generating functions for these generalized 
Hermite polynomials would possibly shed some light on series of the type (1) 
and (2). 

r In the paper [ l ] ,a function H (x, a,p) was introduced by the definition 

(4) Hj(x,a ,p) = ( - l ) n x - a e P x r D ^ ( x a e - P x r ) , 

which gave the generating function 

(5) (i-^V^-^-.Z ^Rr 
V x } n=0 n! n , Hn (x,a,p) . 

This expansion gives at once in a formal sense 

(6) / n = eP(a-b)Fn = Q m " ( a ^ ^ ^ 

where p9x satisfy p(a - b) = log x. 

31 



f i FIBONACCI EXPONENTIALS AND [Dec. 

Therefore we have 

(7) Z Anf/n = a s i S j ^ L . 2 A n t % ( a , m , p ) , 
.n=0 n v r > / k=0 *" n=0 n K 

from which it is evident that it would be desirable to establish simple generat-
ing functions of the sort 

00 

(8) Gj = £ A n t n H ^ ( a , m , p ) 
11=0 

for the generalized Hermite polynomials. 
. For the Lucas numbers we have 

x L n = x a B . x*>n = e P a n . ePbn , with p = log x , 

and, formally, we have from (5) 

(9) eP a n = S f r H?(at0,p) . 
k=0 K- K 

Consequently we find 

(10). xL« , ^ | y 2Q ( J
k ) ( g ) J H ^ ( a . 0 . p ) I I k - J < b . 0 . p ) . 

With this approach to a series of the type (2) we should next have to find bilinear 
generating functions of the form 

(11) G2 * 2 AntnHI!(a9u,p)HJJ(b,v,p) , 
n=0 J 

which seem difficult to obtain. Of course this is not the only way to relate the 
Lucas numbers to the H functions, but it is suggestive of new avenues of 
research, 

One may readily verify (as was found in [1]) that an explicit formula for 
the H functions is 

(12) HNx,a ,p) = < - l ) V s p
k * _ z l ' 1 ) [ } )[ n J • 

•k=0 *• j=0 
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In (7) m Is a p a r a m e t e r and we may take m = 0 for our pu rposes . Thus 
we find 

S A n t n H j ( a . 0 . P ) 
n=0 

(13) 
k s S °® n 

s=0 ..•^O^K 
so that we should have to find some rea l ly s imple sum for a s e r i e s of the type 

n=0 

and this a lso s e e m s difficult. In the case A = 1 (for all n) i t i s poss ib le to 

sum this s e r i e s as follows. 

In genera l 

(15) 2 f(jn) = h Z 2 w S n f ( n ) 5 with oo. = e 2 r r l / j . 
n=0 J s= l n=0 J J 

This gives the summat ion formula 

(too.) 
< l , 5 ^ 1 , 

0 0 / • \ • -i J ( t o o . ) 

(,., « ; ^ - « — ^ a , | t | 
n=0 N ' J s= l (1 - tco.) 

J 

so that in pr inciple we have a (complicated) genera t ing function for (13). 

Another di rect ion in which we may go to find generat ing functions i s s u g -

ges ted by the second general iza t ion of Hermi te polynomials given in [ 1 ] . By 

definition 

(17) gT
n (x,h) = e h D l " x n , D = D x , 

and this yie lds the generat ing function 
oo YL 

(18) e t x + W r = 2 t- gr ( x > h ) _ 
n=0 
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Thus in a formal sense 
00 k 

(19) eP^n = e ~ a z S jL. g* (z,p) . 

Two such expansions, with parameters a and b, might be multiplied 
together or perhaps combined with the expansion (9) in order to obtain generat-
ing functions involving Fibonacci and Lucas numbers as exponents. It seems 
clear that what is needed is a collection of interesting and simple generating 
functions for the generalized Hermite polynomials. It is hoped to offer further 
results in this direction in a later paper. 
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