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The Fibonacei numbers Fn are defined by the recurrence relation

F =F . +F > 2).

Every natural number has a representation as a sum of distinct Fibonacci
numbers, but such representations are not in general unique. When con-
straints are added to make such representations unique, the result is
Zeckendorf's theorem [1], [5]. Statements of Zeckendorf's theorem and its
converse follow(Alpha i1s an integer)

Theorem. {(Zeckendorf). Every natural number N has a unique rep-

resentation in the form

n
N o= Dl P
2
where 0 Saks 1 and if Y1 " 1, then @ = 0.

Theorem. (Converse of Zeckendorf's Theorem) ([1], [3]). Let

{x}

1

be a monotone sequence of distinct natural numbers such that every natural

number N has a unique representation in the form

n

N = Eakxk ’

1

where 0 = ak = 1 andif ak = 1, then ozk = 0. Then

95

+1
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= = 7).

There are generalizations of Zeckendorf's theorem for every mono-
tone sequence {x_ }:o of distinct natural numbers for which x; = 1. The fol-
lowing theorem is the first of many such generalizations.

Theorem 1. Let the numbers X be defined by the recurrence relation

X1=1, X9 = Aa,

X = my +omy X n = 2),

Xn—l -2

where my > 0, my; > 0, and a > 1. Then every natural number N has a
unique representation in the form

n
N = Zakxk ’
1

where @ = 0 and if ak+p+1 # my, Q= my for 1=1i=np.
i) and p is odd, then o < my;
ii) p is even, and k > 1, then o =my;

iii) p is even, and k = 1, then o <a.

The special case my = my = 1, a = 2 is Zeckendorf's theorem, and
the case m; = 1, a = my is a generalization proved by Hoggatt.(See p.89)

Proof. We prove the existence of a representation by induction on .N.
For N <x,;, we have N = Nx;. Take N = x, and assume representability
for 1, 2, --+, N - 1. Since {Xn}zo is a monotone sequence of distinct nat-
ural numbers, any natural number lies between some pair of successive ele-
ments of {xn}o:. More explicitly, there is a unique n = 2 such that x =N
< X9 First let N < myx,,. There are unique integers m and r such
that

N=mx +1r,
n
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where 0 <=m <my and 0= r < X I r=0, then N = mx , whereas
if r = 0, then the induction hypothesis shows that r is representable. Thus
N is representable. Now let N = myx . Since

Xn+]1_ - mlxn * mZXn—l

for n = 2, there are unique integers m and r such that

where 0 = m < m, and05r<xn . If r=20, then

whereag if r > 0, then r is representable. Thus N is representable.
Now use the induction principle.

To prove the uniqueness of this representation, it is sufficient to prove
that X is greater than the maximum admissible sum of numbers less than
X according to constraints (i)-(iii). We prove this by induction on n. For
n = 1, this is obviously true. Take n = 1 and assume that the sufficient

condition is true for 1, 2, **-, n -1, From

n
E Xy o+ (my - xy; o} = ZXZI 1 Ele— = Xop1 ~ b
2

n
Z{mlxm—l * (m %21~ 2} EXZl EXZl T Xop T B>
2

we obtain the identities
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n
Xon1 = 2 {myxy; o+ (my - Dxyy o+ 1,
1) 2

n
Xon 2 Tmyxp; 3+ @y - Dxyy o} + @ - Dxp + 1,
2

The induction hypothesis together with (1) shows that X is greater than the
maximum admissible sum of numbers less than X . Now use the induction
principle.

Theorem 1 can be extended to the case where the numbers x —are de-

fined by the recurrence relation

X1:1, ana(ZSnSq),
q
X, = Emkxn—k > q) ,
1
where my = 0, m = 0 for 1< k=< q, mc1 =0, and 1< a, < a 4 for

1 < n < g. Every natural number N has a unique representation in the form

n
No= e
1

where o = 0 and other constraints similar tothose in Theorem 1 are added.

For example, if @ peap T My for 1 =k <p =< q, then an_p+1 = mp. If

mq. These constraints must be modified to fit the

m
p = q, then an_q+1 =
initial conditions a. The proof of this extension follows that of Theorem 1

and uses the identity
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—a -1
aq—r_
X +eee+fa | —=—|a —eee =1
aq_r_2 q-r-2 ( qg-r [aq—r—l] q-r-1 )

ex +1 O=r<g

Statements of two special cases and the proof of the second one follow.

Theorem. (Daykin [3]). Let the numbers X, be defined by the recur-
rence relation

X = X + X h > q).

Then every natural number N has a unique representation in the form

n
N = Zakxk,
1

where Osaksl and if o 1, then « =0 for 0 =i=< q-1.

k+qg-1 - k+H
Theorem 2. Let the numbers X be defined by the recurrence relation

x = (m + l)n—l(l =n = gq),

q
Xn:mzxn—k h=>q.
1

Then every natural number N has a unique representation in the form

n

N = Eakxk ,

1
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where 0 = o =m and if 4y Tm for 1=1i< q, then @ = m.

Proof. Following the proof of Theorem 1, we prove the existence of a
representation by induction on N. For N < Xq’ we have

q-1
N = Zakxk ,
1

where 0 = o =m. Take N = xq and assume representability for 1, 2,

+, N-1. There is a unique n = q such that X =N=< X 1 Since

q-1
41 T m an~k
0

for n = q, there are unique integers p,m', and r such that

p-1
N=mz:x_k+m'xn_ +r ,
0
where 0 =p=<gq, 0=m'<=m, and 0=r=<x . If r=20, then
p-1
N=mZx_k+m'x_ s
0

whereas if r >0, then r is representable. Thus N is representable.
Now use the induction principle.

To prove the uniqueness of this representation, we prove that X is
greater than the maximum admissible sum of numbers less than X accord-

ing to the constraints by induction on n. For 1= n = g, we have

n-1

n-1
m‘Z xk = mz (m + 1)1{_1 = (m + 1)1’1—1 -1 < (m + l)n_:l = X
1 1

n*
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Take n > g and assume that the sufficient condition is true for n - gq. Then

The induction hypothesis shows that X is greater than the maximum admis-

sible sum of numbers less than X . Now use the induction principle.
Zeckendorf's theorem can be further generalized to cases where the

numbers x are defined by recurrence relations with negative coefficients.

Theorem 3. Let the numbers X, be defined by the recurrence relation

X = 1, Xy = a,
X = m,X - m,X n = 2),

where 0 < my < my and a > my. Then every natural number N has a

unique representation in the form

n
N = Zakxk ,
1

where OSozk<-m1 for k=1, 0=¢ < a, andifozk m -1,

+pt+l -

(02

k+i=m1—m2—1

for 1=i=p, and

(i) k =1, then o = my -my;

(lj.) k = 1, then 011 < a - my .

The proof, which will not be given, follows that of Theorem 1 and uses

the identity
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n-2
X, = (my - 1)xn_1 + (my - my - 1) in +{a -my - )x; + 1.
2

The converse of Zeckendorf's theorem can be generalized to include as
special cases the converses of the generalizations of Zeckendorf's theorem
given so far.

Theorem 4. Let {xn}c: be a monotone sequence of distinct natural
numbers such that every natural number N has a unique representation in

the form
n
N = Zafk X
1

where o = 0 and other constraints on {ozk}n are added such that the rep-
representation of X is itself. Then {xn}oo is the only such sequence.
1
Proof. Assume the sequences {xn}Do and {yn}oo both satisfy the hy-
I 1 1

potheses, where
N _ N
= v

and Y1 = N+t Then VN1 has a unigue representation as a sum of num-
bers X each of which in turnhas a unique representation as a sum ofnum-
bers Yy where n = N. On the other hand, VN1 obviously represents it-

self and, thus, has two representations in terms of numbers Yy This

IN+1
contradicts the uniqueness of representation, and we conclude that

{Xn}of = {yn}oj :

Theorem 4 does not include the converse of the following generalization
of Zeckendorf's theorem.
Theorem (Brown [2]). Every natural number N has a unique repre-

sentation in the form of
[Continued on page 111. ]



