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H-189 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 

(2r + 3s)! (a - b y ) r b S y r + 2 s 

r!s!(r + 2s)f. ,.. ^ ,2r+3s+l 
r > s = 0 0- +y> 1 - ay - b y 2 

U-J9Q Proposed by H. H. Ferns, Victoria, British Columbia. 

Prove the following 

2 r F = n (mod 5) 

2 rL = 1 (mod 5) , 

where F and L are the n Fibonacci and n Lucas numbers, respect-
ively, and r is the least residue of n - 1 (mod 4). 

H-191 Proposed by David Zeitlin, Minneapolis, Minnesota. 

Prove the following identities: 
185 
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2n n 

(a) 

(b) 

Y > / 2 n \ 3 ^ (2n + k)t , n - k 

gw 2k 2\?„ «'<--« 
2 n + l / x n 
Y* (2n + 1 | 3

T -p y ^ (2n + 1 + k)! n+ l -k 

~ l k ' 2k ' 2n+1 to w3^ +1 - 2 k > ! 

2n 

2^ I k] F2k = F 2n 2 ^ ,. f.3/0 OI .f 
k==0 \ / k = 0

( k l ) ( 2 n " 2 k ) I 

(c) > - m * = F o > ; - J ^ L ± _ M [ _ 5n-k 

2 n + l n 
Mv \ ^ /2n + l\3 -p T V 1 (2n + 1 + k)! -ii-k 

til where F and L denote the n Fibonacci and Lucas n u m b e r s , respec t ive ly . 

SOLUTIONS 

KEEPING THE Q's ON CUE 

H-176 Proposed by C. C. Yalavigi, Government College, Mercara, India. 

In the "Collected P a p e r s of Sr inivas Ramanujan,M edited by G. H. 

Hardy, P . V. Sheshu Aiyer , and B. M. Wilson, Cambr idge Univers i ty P r e s s , 

1927, on p . 326, Q. 427 r e a d s a s follows: 

Show that (corrected) 

1 , 2 _, 3 , 1 1 
2tt - 4TT - 6?r - 24 877 * 

e - 1 e - 1 e - 1 

Provide a proof. 

Solution by Clyde A. Bridgerf Springfield, Illinois. 

A typical t e r m on the left-hand side can be wr i t ten a s 
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, -2m77 2m 
m e m q -2m7T - 2m 

e 1 - q 

This sugges t s a logar i thmic der iva t ive of a product . A suitable well-known 

product i s 

00 

(i) Q0 = T T d - q2m) • 
m = l 

(See H a r r i s Hancock, Theory of El l ipt ic Funct ions , p . 396, Dover , 1958) 

where (loc c i t p . 107) 

(2) q = exp (-77K!/K) f 

in which K and Kf have the same re la t ion to el l ipt ic functions a s 27T has 

to t r igonomet r ic functions., F o r example , for the s ine-ampl i tude function, 

we have 

sn(u + 4K + 2iK T ) = sn u 

and for the sine function, 

sin (x + 2TT) = sin x . 

Define K itself a s the complete el l iptic in tegra l of the f i r s t kind 

.7T/2 
(3) K = J d $ 

Vl - k2 0 is/l _ k* fiin2 sm^cf) 

with modulus k. Let K ! , L , and Lf be complete ell iptic in tegra l s of the 

f i r s t kind with moduli k f , i , if, r espec t ive ly . 

The prob lem now is to find something that contains Q0 and K. On 

page 400 (Hancock) appea r s 
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(kk.)12 = i ' qMQiQ, , QiQ2Q3 = 1 . 

and 

i Qo / K , 
Q2 

Then 

(4) q12Q0 = 26(kk'Wir 

is the starting equation. 

Suppose that the four elliptic integrals are connected by 

¥ - £ • 
with k2 +kf 2 = 1 and i2 + I T 2 = 1. (Arthur Cayley, An Elementary Treatise 
on Elliptic Functions, p. 45, Dover, 1961.) 

Then 

7TLT 

(2T) q = e 

and 

(4<) q ? 2 T l ( l - q 2 n m ) = 2 T ( t f ) ^ 

If we divide Eq. (4) by Eq. (4T) and let n 1, we should get 1 = 1. 
Of the conditions to do this, putting 

(6) Jt = kf and V = k 
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gives a sui table form in n only. We find from Eq. (3) that 

189 

(7) L = K! and L< = K . 

Then Eq. (5) becomes 

(50 K/KT = \ln 

Equation (2) becomes 

(2") q = e 
-Tr/\ln. 

and Eq. (2f) becomes 

n -TT/\JR 
q = e 

We can now wr i te the quotient of Eq. (4) by Eq. (4?) a s 

e-7r/12N/H(1 _ e - 2 i r A / n ) ( 1 _ e - 4 i r / ^ ) ( 1 _ e - 6 i r / ^ } 

(8) = n V 7 ^ 7 1 2 " - 0-2ir^ (1 - e - ' ^ M l - e - 4 7 ^ n ) ( l - e - 6 7 r N r n ) . 

Both a r e infinite p roduc t s . We now differentiate this logar i thmica l ly with r e -

spect to n to have 

(9) 

2 4 n ^ n 

4n 

1 1 - 2 4 
-2TT/N/II 0 -47r/\Tn 2e 

-27r/Nin r -4n/\ln. x — e x — e 

24N/1I 
1 - 2 4 

-27TNfn -4ir\fn 

-2ir\/n . -47TNfn 
1 - e 1 - e 

Th i s r educes readi ly to 
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1 - 24 £ m / ( e 2 m 7 T / ^ n - 1) + 
m=l 

(9') 
+ n 1 -24 ^ m/(e2 m W n- 1)1 = *£-

m=l J 

Now let n -+ 1. We find the correct solution to be 

1 + 2 _ + 3 + _ 1 1 
e - l e - l e - 1 

We have followed Ramanujan?s development and have filled in a number 
of gaps because his procedure is quite esoteric. 

Also solved by the Proposer, who used the reference cited in the problem to pick it up at (9f). 

PARTITION 

H-177 Proposed by L Carlitz, Duke University, Durham, North Carolina, (corrected) 

Let R(N) denote the number of solutions of 

N = Fk, + F k , + " ' + F k r <r = 1 . 2 , 3 , . . . ) , vr 

where 

h ^ k2 > • •. > k => 1 

Show that 

« E < F 2n F 2 m > = R<F2n+iF2m> = ( n " m ) F 2 m + F 2m-1 ( n fe m ) • 

® E ( F 2 n F 2 m + l ) = <n " m ) F 2 m + l ( n " m ) • 
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( 3 ) R ( F 2 n + l F 2 m + l > = ( n " m ) F 2 m + l ( n * m ) • 

(4) R ( F | n + 1 ) = R(F ' 2 n ) = F ^ O i ^ l ) . 

Solution by the Proposer. (See re fe rence below.) 

The P r o p o s e r has proved that if 

N = F 2 k + F 2 k + 4 + F 2 k + 8 + ' ' ' + F 2 k + 4 r - 4 ( k * X) • 

then 

« B(N) = k F 2 r - F 2 r _ x 

Also the s ame r e su l t holds for 

N = F 2 k + l + F 2 k + 5 + " - + F 2 k + 4 r - 3 ( k fc X) ' 

1. Since 

F F = F + F + . 9 0 + F (n ^ m) , 
*2n 2m 2n-2m+2 *2n~2m+6 * 2n+2m-2 l11 m / ' 

i t follows from f ) that 

R ( F 0 F 0 ) = (n - m + 1)FQ - F 0 0 2n 2m 2m 2m-2 

= (n - m ) F 0 + F„ - (n > m) . 
x ' 2m 2 m - l 

Since 

F 2 n + l F 2 m = F 2 n - 2 m + 3 + F 2 n - 2 m + 7 + • ' ' * + F 2 n + 2 m - l ( n * m ) ' 

it follows that 

E ( F 0 ^F0 ) = R ( F 0 F Q ) v 2n+l 2m 2n 2m 

L7 Carl i tZj "Fibonacci R e p r e s e n t a t i o n s , " Fibonacci Qua r t e r ly , Vol. 6, pp„ 
193-220. 
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2. It i s proved in Theo rem 1 of the paper cited above that if 

N = F. + F. + • • • + Fb- , kj k2
 K r 

where 

H ^ *2 

then 

( * ) R ( N ) = R ( V k r ^ l + ' - - + F k r . l - ^ 1 > 

+ ([ikr] " j B V k ^ + ••• +Fkr-i-kr+2) . 

and in pa r t i cu l a r if k i s odd, then 

(***) R(N) = R ( F k - 1 + *•• + F k r - l ) • 

Since 

F F = ( F + F + . . . + F ) + F 
2n 2m+l i r 2 n + 2 m - l r 2 n + 2 m - 3 r 2 n - 2 m + 3 / *2n-2m 

(n ^ m) , 

i t follows from (* $ and (***) that 
R ( F 0 F 0 , . ) = R(F/I + F . A + • • • + F . ) + (n - m - 1) R ( F , _,, v 2n 2m+l 4m 4m-4 4 ' 4m+l 

+ F 5 ) 
( n - m ) E ( F 4 m + i 4 m _ 4 + . . . + F 4 ) 

= ( n " m ) ( 2 F
2 m " F 2 m - 2 ) = <n " m ) F 2 m + l <Q * m ) . 

3. Since 

F 2 n + l F 2 m + l ( F 2n+2m + F 2 n + 2 m - 4 + * ' ' + F2n-2mH-4* + F 2 n - 2 m + l ( n > m ) » 
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i t follows from (***) and '(**) that 

R ( F 2 n + l F 2 m + l ) " R ( F 2 n + 2 m - l + F 2 n + 2 m - 5 + ' ' ' + F 2 n - 2 m + 3 ) + F 2 n - 2 m ) 

R ( F 4 m + F 4 m - 4 + • - + F 4 ) + fe - m - D R O T ^ + 
+ F 5 ) 

= ( n - m ) R ( F 4 m + F 4 m _ _ 4 + . . . + F4) 

= (n - m ) F 2 m + 1 (n > m) . 

4. Since 

we get 

F l n + 1 = ( F 4 n + F 4 a - 4 + - - - + F 4 > + F 2 

^ 2 1 1 + 1 > = R < F 4 n - l + F 4 n - 5 + " - + F 3 ) 

= R < F 4 n - 2 + F 4 n - 6 + " - + F 3 > 

= F 2 n - F 2 n - 2 = F 2 n - 1 <n a X ) 

S imi lar ly s s ince 

F 2 n = F 4 n - 2 + F 4 n - 6 + * * * + F 2 • 

we have 

R * F 2n> = F 2 n - 1 ( n * X) 

WHAT'S THE DIFFERENCE? 

H-178 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Put 

(m + n j ' 
m J 
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Show that a satisfies no recurrence of the type 
m,n J ^ 

r s 
7 7 c. , a . , = 0 (m ^ r5 n ^ s) , 
j=0 h=0 

where the c. . and r, s are all independent of m,n. 
Show also that a satisfies no recurrence of the type 

m,n J F 

r n 
/ C 5 2 c. , a . , = 0 (m ^ r , n > 0) , 
j=0 k=0 

where the c. . and r are independent of m,n. 

Solution by the Proposer. 

1. Assume that 

r s 
(1) V ] Y ^ c. . a . . = 0 <m > r , n > s) , 

L-j C~d j , k m - j , n - k ' 

j=0 k=0 

where c. , and r , s are independent of m,n. 
00 

F(x,y) = J^ a m / f f l y ° 
m,n=0 

Then we have 

(2) F(x,y) = {(1 - x - y)2 - 4 x y p . 

Indeed, 
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_1 
{(1 - x - y)2 - 4 x y H = (1 - x - y)" 1 ) 1 - ^ f 2 

( (1 - x - y)2 | 

E 2 k (xy)K 

k=0 (1 " x - y) 

= E t **>" E n̂" n (X + *>* 
k=0 n=0 

00 00 
2k 

m + n m E 2k / sk \~* 2k + m + n m + n m n 
k M 2^J ™ + n ™ x y 

k=0 m,n=0 

oo min(m,n) 

k! k! (m - k)! (n - k)t * E m n \""* (m + n)l x y L — 
m5n=0 k=0 

The inner sum is equal to 

oo 
fm + n\ V^ /m\ / n \ (m + nY \ m )L. [k){k) = \ m ) > 

which proves (2).) 
Now 

i : £ cjikXjy
kF(x,y). £ £ v J / £ £ v,n *° y» 

j=0 k=0 j=0 k=0 m=0 n=0 

= V b x: 
Lmji m , n 

m,n=0 

m n 
' y 

where 
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b = / c. , a . , 
m,n JLJ. j , k m-j9n-k 

By (l)j we have 

b = Q (m > r, n > r ) , 
m,n N 9 

so that 

r s 

<3) X) E c j , k x 3 y F(x>y> 
j=0 k=0 

r - l x oc s-1 r -1 s-1 

= y y b xm
y
n - y y b xY-yvb x

m
y
n 

1-J £^d m9n J xL^ £«j m9n J Z ^ JL*# m5n J 

m=0 n=0 m=0 n=0 m=0 n=0 

For fixed m9 a is a polynomial in n, hence b is also a poly-
m9n r J m9n ^ J 

nomial in n. Similarly, for fixed n9 b is a polynomial in m. Conse-
quently, each of the sums 

r - l oo oo s-1 

E v ^ , m n v ^ ^ K m n 
JLJ m,n ^ J Z ^ Z»J m9n ^ 

m=0 n=0 m=0 n=0 

is a rational function of x9y„ Hence, by (3), F(x9y) is a rational function 
of x,y. This contradicts (2). 

2. Assume that 

(4) Y ] 7 c . , a i = 0 (m ^ r9 n ^ 0) 
*--* £ ^ j5k m-n,n-k 
j=0 k=0 

Then as in 15 we have 
[Continued on page 202. ] 


