$$
\begin{aligned}
2 \mathrm{x} & =-10^{\mathrm{n}}+\sqrt{10^{2 \mathrm{n}}+4 \cdot 10^{2 \mathrm{n}}-4 \cdot 10^{\mathrm{n}}} \\
& =-10^{\mathrm{n}}+\sqrt{5 \cdot 10^{2 \mathrm{n}}-4 \cdot 10^{\mathrm{n}}}
\end{aligned}
$$

Again for very large values we may ignore $4 \cdot 10^{\mathrm{n}}$ in the expression under the square-root sign, so having, as $n \rightarrow \infty$,

$$
2 \mathrm{X} \rightarrow-10^{\mathrm{n}}+10^{\mathrm{n}} \sqrt{5}
$$

i.e.,

$$
\mathrm{X} \rightarrow \frac{10^{\mathrm{n}}(\sqrt{5}-1)}{2}
$$

Hence

$$
X / Y \rightarrow(\sqrt{5}-1) / 2, \quad Y / X \rightarrow(\sqrt{5}+1) / 2 .
$$

Fibonacci again!
It may be noted that with $\mathrm{n}=6$, the greatest value of Y (giving the minimal $X: Y$ ratio) gives

$$
569466945388=945388^{2}-569466^{2}
$$

And for this we have $\mathrm{Y} / \mathrm{X}=1.6601 \cdots$.
[Continued from page 196.]

$$
\sum_{j=0}^{r} \sum_{k=0}^{\infty} c_{j, k} x^{j} y^{k} F(x, y)=\sum_{\dot{m}=0}^{r-1} x^{m} \sum_{j=0}^{m} \sum_{k=0}^{\infty} c_{j, k} y^{k} \sum_{n=0}^{\infty} a_{m-j, n} y^{n}
$$

It follows that $\mathrm{F}(\mathrm{x}, \mathrm{y})$ is rational in x , again contradicting (2).
Remark. We note that $a_{m, n}$ does satisfy recurrences of the type

