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Theorem:
where

and [x] is the greatest integer contained in x.
Proof. For k =1,
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See [1, Thm. III]. The Binet form for the Fibonacci numbers is
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See [2]. Therefore,

k 1 _ 1 n
aFn+—2-—Fn+k+(§-ka).

The next step is to prove that ankI <L, n=k, k =2 Since n =k, let
n = k for a fixed k. When n = k, Iankl will have its largest value. As
n —oo, Ibnl — 0 monotonically. When k is even:
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since ab = -1. The sequence
1- bzk
NG
is monotone increasing, and also
2k _
lim ___.1 —.—._ = _1_. - _l_. < %
k = ! «NB NH NG
Thus,
n -1
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for even k. Now for odd k, we have
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since ab = -1. Here we are considering k =3, 5, 7, ***. When k = 3,

b2k = 18 2 0.055726 :
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and as k increases, bzk gets smaller rapidly and

( 1 bzk
NG
becomes smaller. Therefore, if
a1 - b2k _1
NG 2

for k = 3, then itis less than 1/2 for any odd k greater than 3. Thus:
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then
|1+b2kl<_2'\/§ or —52—2<b2k<'\f52-2

Since N5 is approximately 2.2361, the upperboundisapproximately0.1181,

and since

b = b = 0.055726 ,

then certainly
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Therefore:
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for all odd k, and, moreover,

for all k =2 and n = k. Finally, since we know that

we have
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Multiplying by -1 and adding 1/2, we have

Since

(i)

implies that
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Also, since
1
<§ - ank> <1,
.. 1 n k
(ii) Fn+k+<§-ka) < F g *t1l ad aF +5 <F + 1.

Therefore, combining (i) and (ii), we obtain

n+k n 2 n+k

or

k 17 _
[a Fn+-2-:l = Fn-l-.k .
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REMARK

With the aid of an ingenious programmer, Galen Jarvinen, it seems

reasonable that

k 11 _
[a Ln+§] = Ly
and in general that

k 11 _
[a Hp * E] = Mok
with n somewhat greater than k.



