# A GENERALIZED GREATEST INTEGER FUNCTION THEOREM 

## ROBERT ANAYA and JANICE CRUMP

San Jose State College, San Jose, California

Theorem:

$$
\left[\mathrm{a}^{\mathrm{k}} \mathrm{~F}_{\mathrm{n}}+\frac{1}{2}\right]=\mathrm{F}_{\mathrm{n}+\mathrm{k}}, \quad \mathrm{n} \geq \mathrm{k}, \quad \mathrm{k} \geq 1
$$

where

$$
\mathrm{a}=\frac{1+\sqrt{5}}{2}
$$

and $[x]$ is the greatest integer contained in $x$.
Proof. For $\mathrm{k}=1$,

$$
\left[a F_{\mathrm{n}}+\frac{1}{2}\right]=\mathrm{F}_{\mathrm{n}+1}
$$

See [1, Thm. III]. The Binet form for the Fibonacci numbers is

$$
F_{n}=\frac{a^{n}-b^{n}}{\sqrt{5}}
$$

where

$$
a=\frac{1+\sqrt{5}}{2} \text { and } b=\frac{1-\sqrt{5}}{2}
$$

Thus

$$
\begin{aligned}
a^{k^{k}} \mathrm{~F}_{\mathrm{n}} & =\frac{a^{\mathrm{n}+\mathrm{k}}-b^{n^{k}} a^{k}}{\sqrt{5}}=\frac{a^{\mathrm{n}+\mathrm{k}}-b^{n^{k}} a^{k}}{\sqrt{5}} b^{n+k}+b^{n+k} \\
& =\frac{a^{n+k}-b^{n+k}}{\sqrt{5}}+\frac{b^{n+k}-b^{n} a^{k}}{\sqrt{5}} \\
& =F_{n+k}-b^{n}\left(\frac{a^{k}-b^{k}}{\sqrt{5}}\right)=F_{n+k}-b^{n} F_{k}
\end{aligned}
$$

See [2]. Therefore,

$$
\mathrm{a}^{\mathrm{k}} \mathrm{~F}_{\mathrm{n}}+\frac{1}{2}=\mathrm{F}_{\mathrm{n}+\mathrm{k}}+\left(\frac{1}{2}-\mathrm{b}^{\mathrm{n}} \mathrm{~F}_{\mathrm{k}}\right)
$$

The next step is to prove that $\left|b^{n} F_{k}\right|<\frac{1}{2}, n \geq k, k \geq 2$. Since $n \geq k$, let $\mathrm{n}=\mathrm{k}$ for a fixed k . When $\mathrm{n}=\mathrm{k},\left|\mathrm{b}^{\mathrm{n}} \mathrm{F}_{\mathrm{k}}\right|$ will have its largest value. As $n \rightarrow \infty,\left|b^{n}\right| \rightarrow 0$ monotonically. When $k$ is even:

$$
\left|b^{k} F_{k}\right|=\left|\frac{b^{k}\left(a^{k}-b^{k}\right)}{\sqrt{5}}\right|=\left|\frac{(b a)^{k}-b^{2 k}}{\sqrt{5}}\right|=\left|\frac{1-b^{2 k}}{\sqrt{5}}\right|,
$$

since $a b=-1 . \quad$ The sequence

$$
\left|\frac{1-\mathrm{b}^{2 \mathrm{k}}}{\sqrt{5}}\right|
$$

is monotone increasing, and also

$$
\lim _{\mathrm{k} \rightarrow \infty}\left|\frac{1-\mathrm{b}^{2 \mathrm{k}}}{\sqrt{5}}\right|=\left|\frac{1}{\sqrt{5}}\right|=\frac{1}{\sqrt{5}}<\frac{1}{2}
$$

Thus,

$$
0 \leq\left|b^{n} F_{k}\right|<\frac{1}{2}
$$

for even $k$. Now for odd $k$, we have

$$
\left|b^{k} F_{k}\right|=\left|\frac{b^{k}\left(a^{k}-b^{k}\right)}{\sqrt{5}}\right|=\left|\frac{(a b)^{k}-b^{2 k}}{\sqrt{5}}\right|=\left|\frac{-1-b^{2 k}}{\sqrt{5}}\right|
$$

since $\mathrm{ab}=-1$. Here we are considering $\mathrm{k}=3,5,7, \cdots$. When $\mathrm{k}=3$,

$$
\mathrm{b}^{2 \mathrm{k}}=\mathrm{b}^{6} \approx 0.055726
$$

and as $k$ increases, $b^{2 k}$ gets smaller rapidly and

$$
\left|\frac{-1-b^{2 k}}{\sqrt{5}}\right|
$$

becomes smaller. Therefore, if

$$
\left|\frac{-1-\mathrm{b}^{2 \mathrm{k}}}{\sqrt{5}}\right|<\frac{1}{2}
$$

for $\mathrm{k} \equiv 3$, then it is less than $1 / 2$ for any odd k greater than 3. Thus:

$$
\left|\frac{-1-\mathrm{b}^{2 \mathrm{k}}}{\sqrt{5}}\right|=\left|\frac{1+\mathrm{b}^{2 \mathrm{k}}}{\sqrt{5}}\right| .
$$

If

$$
\left|\frac{-1-\mathrm{b}^{2 \mathrm{k}}}{\sqrt{5}}\right|<\frac{1}{2}
$$

then

$$
\left|1+b^{2 \mathrm{k}}\right|<\frac{\sqrt{5}}{2} \quad \text { or } \quad \frac{-\sqrt{5}-2}{2}<\mathrm{b}^{2 \mathrm{k}}<\frac{\sqrt{5}-2}{2}
$$

Since $\sqrt{5}$ is approximately 2.2361, the upper bound is approximately 0.1181 , and since

$$
b^{2 \mathrm{k}}=\mathrm{b}^{6}=0.055726
$$

then certainly

$$
0<\mathrm{b}^{2 \mathrm{k}}<\frac{\sqrt{5}-2}{2}
$$

[Feb.
Therefore:

$$
\left|b^{k} F_{k}\right|<\frac{1}{2}
$$

for all odd k , and, moreover,

$$
\left|\mathrm{b}^{\mathrm{n}} \mathrm{~F}_{\mathrm{k}}\right|<\frac{1}{2}
$$

for all $k \geq 2$ and $n \geq k$. Finally, since we know that

$$
\left|b^{n} F_{k}\right|<\frac{1}{2}
$$

we have

$$
-\frac{1}{2}<\mathrm{b}^{\mathrm{n}} \mathrm{~F}_{\mathrm{k}}<\frac{1}{2}
$$

Multiplying by -1 and adding $1 / 2$, we have

$$
0<\frac{1}{2}-\mathrm{b}^{\mathrm{n}} \mathrm{~F}_{\mathrm{k}}<1
$$

Since

$$
\begin{gathered}
\frac{1}{2}-\mathrm{b}^{\mathrm{n}} \mathrm{~F}_{\mathrm{k}}>0 \\
\text { (i) } \quad \mathrm{a}^{\mathrm{k}} \mathrm{~F}_{\mathrm{n}}+\frac{1}{2}=\mathrm{F}_{\mathrm{n}+\mathrm{k}}+\left(\frac{1}{2}-\mathrm{b}^{\mathrm{n}} \mathrm{~F}_{\mathrm{k}}\right)
\end{gathered}
$$

implies that

$$
\left(\mathrm{a}^{\mathrm{k}} \mathrm{~F}_{\mathrm{n}}+\frac{1}{2}\right)>\mathrm{F}_{\mathrm{n}+\mathrm{k}}
$$

Also, since

$$
\begin{gathered}
\left(\frac{1}{2}-b^{n} F_{k}\right)<1 \\
\text { (ii) } \mathrm{F}_{\mathrm{n}+\mathrm{k}}+\left(\frac{1}{2}-\mathrm{b}^{\mathrm{n}} \mathrm{~F}_{\mathrm{k}}\right)<\mathrm{F}_{\mathrm{n}+\mathrm{k}}+1 \text { and } \mathrm{a}^{\mathrm{k}} \mathrm{~F}_{\mathrm{n}}+\frac{1}{2}<\mathrm{F}_{\mathrm{n}+\mathrm{k}}+1
\end{gathered}
$$

Therefore, combining (i) and (ii), we obtain

$$
\mathrm{F}_{\mathrm{n}+\mathrm{k}}<\mathrm{a}^{\mathrm{k}} \mathrm{~F}_{\mathrm{n}}+\frac{1}{2}<\mathrm{F}_{\mathrm{n}+\mathrm{k}}+1
$$

or

$$
\left[\mathrm{a}^{\mathrm{k}} \mathrm{~F}_{\mathrm{n}}+\frac{1}{2}\right]=\mathrm{F}_{\mathrm{n}+\mathrm{k}}
$$

## REFERENCES

1. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin Company, Boston, 1969, pp. 34-35.
2. V. E. Hoggatt, Jr., John W. Phillips, and H. T. Leonard, Jr., "TwentyFour Master Identities," The Fibonacci Quarterly, Vol. 9, Feb. , 1971, pp. 2-5.

## REMARK

With the aid of an ingenious programmer, Galen Jarvinen, it seems reasonable that

$$
\left[\mathrm{a}^{\mathrm{k}} \mathrm{~L}_{\mathrm{n}}+\frac{1}{2}\right]=\mathrm{L}_{\mathrm{n}+\mathrm{k}}
$$

and in general that

$$
\left[\mathrm{a}^{\mathrm{k}_{\mathrm{n}}}+\frac{1}{2}\right]=\mathrm{H}_{\mathrm{n}+\mathrm{k}}
$$

with n somewhat greater than k .

