THE LAMBERT FUNCTION

WRAY G. BRADY
Slippery Rock State College, Slippery Rock, Pennsylvania

The sum of certain reciprocal Fibonacci series can be summed in terms of the so-called Lambert series or Lambert function:

$$
L(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{1-z^{n}}=\sum_{n=1}^{\infty} T_{n}(z)^{n}
$$

where T_{n} is the number of divisors of N^{*}. For example, let

$$
\begin{gathered}
\beta=\frac{1-\sqrt{5}}{2} \\
\sum_{\mathrm{k}=1}^{\infty} \frac{1}{\mathrm{~F}_{2 \mathrm{k}}}=\sqrt{5}\left[\mathrm{~L}\left(\frac{3-\sqrt{5}}{2}\right)-\mathrm{L}\left(\frac{7-3 \sqrt{5}}{2}\right)\right]=\sqrt{5}\left[\mathrm{~L}\left(\beta^{2}\right)-\mathrm{L}\left(\beta^{4}\right)\right]
\end{gathered}
$$

or to generalize:

$$
\sum_{\mathrm{k}=1}^{\infty} \frac{1}{\mathrm{~F}_{2 \mathrm{~km}}}=\sqrt{5}[\mathrm{~L}(2 \mathrm{~m} \beta)-\mathrm{L}(4 \mathrm{~m} \beta)]
$$

for an integer m, such that $m>0$.
In this note, we tabulate the Lambert function for selected real values of z . The results are given in the table below. The calculations were made by machine evaluation. The graph of the approximation polynomial to $L(z)$ is shown on the following page.

[^0]THE LAMBERT FUNCTION
Feb. 1972

z	L_{z}	$\mathrm{L}_{(-\mathrm{z})}$
.95	19.7372	4.7378
.90	14.4885	3.1728
.85	10.6987	2.0953
.80	7.9593	1.3565
.75	5.9724	.8513
.70	4.5224	.5066
.65	3.4550	.2720
.60	2.6605	.1130
.55	2.0615	.0062
.50	1.6035	-.0645
.45	1.2482	-.1096
.40	.9687	-.1363
.35	.7464	-.1493
.30	.5667	-.1518
.25	.4211	-.1456
.20	.3017	-.1316
.15	.2035	-.1103
.10	.1223	-.0817
.05	.0553	-.0452
.00	.0000	

[^0]: *Konrad Knopp, Theory and Application of Infinite Series, Harper, New York.

