THE LAMBERT FUNCTION

WRAY G. BRADY Slippery Rock State College, Slippery Rock, Pennsylvania

The sum of certain reciprocal Fibonacci series can be summed in terms of the so-called Lambert series or Lambert function:

$${\rm L(z)} \ = \sum_{n=1}^{\infty} \ \frac{{\rm z}^n}{1 \ - \ {\rm z}^n} \ = \sum_{n=1}^{\infty} \ {\rm T}_n({\rm z})^n \ \text{,}$$

where \mathbf{T}_n is the number of divisors of $\mathbb{N}^*.$ For example, let

$$\beta = \frac{1 - \sqrt{5}}{2}$$

9

$$\sum_{k=1}^{\infty} \frac{1}{F_{2k}} = \sqrt{5} \left[L \left(\frac{3 - \sqrt{5}}{2} \right) - L \left(\frac{7 - 3\sqrt{5}}{2} \right) \right] = \sqrt{5} \left[L(\beta^2) - L(\beta^4) \right]$$

or to generalize:

$$\sum_{k=1}^{\infty} \frac{1}{F_{2km}} = \sqrt{5} [L(2m\beta) - L(4m\beta)] ,$$

for an integer m, such that m > 0.

In this note, we tabulate the Lambert function for selected real values of z. The results are given in the table below. The calculations were made by machine evaluation. The graph of the approximation polynomial to L(z) is shown on the following page.

*Konrad Knopp, Theory and Application of Infinite Series, Harper, New York.

THE LAMBERT FUNCTION

Feb. 1972

Z	$\mathbf{L}_{\mathbf{Z}}$	L _(-z)
.95	19.7372	4.7378
.90	14.4885	3.1728
.85	10.6987	2.0953
.80	7.9593	1.3565
.75	5.9724	.8513
.70	4.5224	.5066
.65	3.4550	.2720
.60	2.6605	.1130
.55	2.0615	.0062
.50	1.6035	0645
.45	1.2482	1096
.40	.9687	1363
.35	.7464	1493
.30	.5667	1518
.25	.4211	1456
.20	.3017	1316
.15	.2035	1103
.10	.1223	0817
.05	. 0553	0452
.00	.0000	

200