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be received within three months of the publication date. 

Contributors (in the United States) who desire acknowledgement of r e -
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postcards. 

DEFINITIONS 

The Fibonacci Numbers F and the Lucas Numbers L satisfy 
n n J 

F ^0 = F ^ + F , F0 = 0, Fi = 1 and L l 0 = L (1 +L , L0 = 2, L, = 1. n+2 n+1 n' u 1 n+2 n+1 n9 u ' 1 

PROBLEMS 

B-226 Proposed by R. M. Grass!, University of New Mexico, Albuquerque, New Mexico. 

Find the smallest number in the Fibonacci sequence 1, 1, 2, 3, 5, • • • 
that is not the sum of the squares of three integers. 

B-227 Proposed by H. V. Krishna, Manipal Engineering College, Manipal, India. 

Let H0, Hi, H2, - , o be a generalized Fibonacci sequence satisfying 
H 2 = H - + H (and any initial conditions H0 = q and HA = p). Prove 
that 

F l H 3 + F2H6 + F3H9 + • • • + F n H 3 n = F n F n + 1 H 2 n + 1 . 

B-228 Proposed by Wray G. Brady, Slippery Bock State College, Slippery Bock, Pennsylvania. 

Extending the definition of the F to negative subscripts using 
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F - n = ^ ~ \ • 

prove that for all integers k, m, and n 

(-l)kF F . + ( - l ) m F. F + (-l)nF F. = 0 . 
n m-k k n-m x m k-n 

B-229 Proposed by Wray G. Brady, Slippery Rock State College, Slippery Rock, Pennsylvania. 

Using the recursion formulas to extend the definition of F and L to & n n 
all integers n, prove that for all integers k, m, and n 

(-l)kL F . + (-l)mL. F + (-l)nL F. = 0 . 
n m-k k n-m m k-n 

B-230 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. 

Let {C } satisfy 

C ^ - 2C ^o - C ^ + 2C _,, + C = 0 n+4 n+3 n+2 n+1 n 

and let 

Gn = Cn+2 " Cn+1 " C n ' 

Prove that {G } satisfies G . „ = G .- + GM . L nJ n+z n+1 n 

B-231 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. 

A GFS (generalized Fibonacci sequence) H0, Hl9 H2, ••• satisfies the 
same recursion formula 

® H = H + H 
n+2 n+1 n 

as the Fibonacci sequence but may have any initial values. It is known that 

HnHn+2 " H n + 1 = ^ • 

where the constant c is characteristic of the sequence. Let {H } and {K } 
be GFS and let 
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C = HAK + ELK - + HQK 0 + . . . + H L . n O n 1 n-1 2 n-2 n 0 

Show that 

n+2 n+1 n n 

where {G } is a GFS whose characteristic is the product of those of {H } 
and {Kn}. 

SOLUTIONS 

GENERALIZED FIBONACCI IDENTITY 

B-208 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. 

Let 

F0 = 0, Fi = 1, F ^ = F ^ + F , L0 = 2, L, = 1, L ^ = L . + L . u » i » n+2 n + l n u 1 n+2 n+1 n 

Prove both of the following and generalize: 

(a) F* = 3F* - F3 = 2( - l ) n 

n+2 n+1 n 

(b) L* = 3L* - L2 = 10(- l ) n . 
n+2 n+1 n v 

Solution by David Zeitlin, Minneapolis, Minnesota. 

In the paper by David Zeitlin, "Power Identities for Sequences Defined 
b y Wn+2 = d W n+l " c Wn9 ? f t h i s Q u a r t e r l y » Vol. 3, No. 4, 1965, pp. 241-255, 
it is shown on page 251, Eq. (4.5) that 

( 1 ) Hn+2 - 3 H n + l + Hn = 2(-l)n+1(H? - H l H o - H§) , 

where 

H 0 = H , , + H , n = 0, 1, 
n+2 n+1 n 

Thus, (1) gives (a) for H s F and (b) for H = L . , & n n n n 
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Also solved by Richard Blaze/, Herta T. Freitag, Ralph Garfield, J. A. H. Hunter, C. B. A. Peck, A. G. 

Shannon, and the Proposer. 

FURTHER GENERALIZATION 

B-209 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California 

Do the analogue of B-208 for the Pell sequence defined by 

P0 = 0, Pi = 1, P ^ = 2P ^ + P , and Q = P + P , . u ' i » n+2 n+1 n ^n n n-1 

Solution by David Zeitlin, Minneapolis, Minnesota. 

In the paper quoted in B-208, there is given Eq. (3el) on p„ 245 which 
states that 

(1) W^+2 - (d2 - 2c)W^+1 + c2W^ = 2cn+1(wf - dW0Wi + cW2) , 

where 

n+2 n+1 n 

Thus, for d = 2, c = - 1 , and W = P , (1) gives 

<2> K+2 - 6 P U + p i = 2 ( - 1>n + 1 • 
Since 

%+2 = 2 ( V l + Q n • 

we obtain from (1) for d = 29 c = - 1 , and W"n = Qn? Q0 = 1, Qi = 1, 

(3) Q^+2 - 6Q^+1 + <£ = 4(-l)n . 

Also solved by Herta T. Freitag, Ralph Garfield, A. G. Shannon, and the Proposer. 
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SUMMING OF FIBONACCI RECIPROCALS 

B-210 Proposed by Guy A. R. Guillotte, Montreal, Quebec, Canada. 

Let Fi = F 2 = 1 and F ^ = F n + 1 + F . P rove that S > 803/240, 
where 

• - * • * • * • 

Solution by Peter A. Lindstrom, Genesee Community College, Batavia,New York. 

Consider the finite sum S , where 
n ' 

S n = ( 1 / F t ) + (1 /F 2 ) + . . . + ( 1 / F n ) 

Then one finds that 

240 S^ = 240 + 240 + 120 + 8 0 + 4 8 + 30 + 1 8 ^ + 1 1 ^ + 7 - ^ 

+ 4 * ° + 2 ^ + 1-51+ 1-Z-
55 * 89 144 L 233 ' 

and hence 240 S^ > 803. Then S > Sj3 > 803/240. 

>4/«? solved by R. Garfield, C. B. A. Peck, and the Proposer. 

FIBONACCI WITH A GEOMETRIC PROGRESSION 

B-211 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. (Corrected) 

Let F be the n t e r m in the Fibonacci sequence 1, 1, 2, 3 , 5, 

Solve the r e c u r r e n c e 

D _ = 2D + F 0 J / l n+1 n 2n+l 

subject to the init ial condition D4 = 1. 
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Composite of solutions by Herta T. Freitag, Ho//ins, Virginia, and R. Garfield, College of Insurance, 

New York, New York. 

The condition D2 = 3 i s unnecessa ry and is indeed false s ince the r e -

cu r r ence gives D2 = 2DA + F 3 = 2-1 + 2 = 4. 
By wri t ing a few t e r m s in the D sequence i t i s easy to show that 

D n+1 2nD1 + 2 n 1 F 3 + 2 n 2 F 5 + • • • + 2F 0 „ , + F r 2 n - l 2n+l * 

Using the Binet formula and summing geomet r ic p rog re s s ions 9 we find that 

n 2n+2 

It i s e a s i e r to prove this by mathemat ica l induction than to check the de ta i l s . 

Also solved by the Proposer. 

A QUESTION WITH MANY ANSWERS 

B-212 Proposed by To mas Djerverson, Albrook College, Tigertown on the Bio. 

Give examples of in te res t ing functions f and g such that 

f(m,n) = g(m + n) - g(m) - g(n) . 

(One example i s f(m,n) = mn and 

g(n) n(n - l ) / 2 . 

E P S Editor1 s Note. We tabulate some of the submit ted a n s w e r s a s follows: 

g(m) Solver 

Proposer 
Herta T. Freitag 
Herta T. Freitag 
John W. Milsom 
John W. Milsom 

f(m,n) 

mn 
mn 

g(m)g(n) 
2mn 

3mn(m + n) 

Phil Maria ^ ( m » n ) 

(™) - mto - l)/2 
m(m + c ) / 2 , c constant 

r m - 1, r constant 

m 2 

m° 

log(m!) 
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UNFRIENDLY SUBSETS ON A LINE OR CIRCLE 

B-213 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Given n points on a straight line, find the number of subsets (including 
the empty set) of the n points in which consecutive points are not allowed. 
Also find the corresponding number when the points are on a circle. 

Solution by Theodore J. Cullen, Cal Poly, Pomona, California. 

Let T be the solution for the line. It is easily seen that Ft = 2 and 
T2 = 3. For n ^ 3, let p be an extreme point, i.e., p has only one neigh-
bor. Then the subsets can be divided into two types, those with p absent 
and those with p present. Clearly there are T - of the first type and 
T _2 of the second type, so that 

T = T n + T n n-1 n-2 

Therefore T = F l 0 for n ^ 1, where Fi = Fo = 1 and n n+2 L L 

F = F - + F 0 n n-1 n-2 

for n ^ 3, the Fibonacci numbers. 
Let V be the solution for the circle. One can check that Vi = 2, 

n * 
V2 = 3, V3 = 4. For n ^- 4 let p be any fixed point, and again consider 
subsets with p absent and then p present. The numbers of these are T _1 

and T ~> respectively, so that 

V = T , + T 0 = F _ L 1 + F i = L' , n n-1 n-3 n+1 n-1 n 

the n Lucas number. 

Also solved by Sister Marion Belter, Herta T. Freitag, and the Proposer. 


