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1. INTEODUCTION 

A p r i m e p p o s s e s s e s a Fibonacci P r imi t ive Root g if g i s a p r i m i -

tive root of p and if i t sa t i s f ies 

(1) g2 = g + 1 (mod p) . 

It i s obvious that if (1) holds then so do 

(2) g3 = g2 + g (mod p) , 

(3) g4 = g3 + g2 (mod p) , 

e tc . 
F o r example j g = 8 is one of the four pr imi t ive roo t s of p = 11 (the 

o the r s being 29 65 7), and g = 8 (only) sa t i s f ies (1). Thus s i t s powers 8 

(mod 11) a r e 

1, 85 95 6, 45 10, • - • (mod 11) 

and m a y be computed not only by 

9 = 82
? 6 = 9-8, 4 = 9»8? • • • (mod 11) , 

but a lso 5 m o r e s imply , by 

9 = 8 + 1, 6 = 9 + 85 4 = 6 + 9, • • • (mod 11) . 

Thus the name: Fibonacci P r imi t i ve Root. 
The brief Table 1 shows eve ry p < 200 that has an F . P . R. , and eve ry 

such g satisfying 0 < g < p that i t p o s s e s s e s . By incomplete induction (a 
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E_ 
5 

11 

19 

31 

41 

59 

61 

g 
3 

8 

15 

13 

7, 35 

34 

18, 44 

TABLE 1 

P 
71 

79 

109 

131 

149 

179 

191 

g 
63 

30 

11, 99 

120 

41, 109 

105 

89 

fine old expression seldom used these days), we observe the following prop-
ert ies , all of which are easily proved in the next section. 

A9 Except for the singular p = 5, all p having an F. P. R. are = ±1 
(mod 10). 

B. But not all p = ±1 (mod 10) have an F. P.R. , since, e. g. , p = 29 
and 101 do not. 

C. Except for the singular p = 5, the number of g in 0 < g < p, if 
any, is 1 or 2 according as p = -1 or +1 (mod 4). 

D. In the latter case, the two g satisfy 

(4) g l + g2 = p + 1 . 

2. ELEMENTARY PROPERTIES 

The solutions of (1) are 

(5) g = (1 ± N/5")2_1 (mod p) 

and therefore exist if, and only if, p = 5, g = 3, or p = 10k ± 1, since 
only these p have 5 as a quadratic residue., This proves A. For p = 2 9 , 
the two solutions of (1) are g = 6 and 24, but since these are also quad-
ratic residues of 29, they cannot be primitive roots, thus proving B. The 
product of the two solutions (5) is given by 
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(6) gAg2 - -1 (mod p) . 

Thus 9 if p = -1 (mod 4), one g is a quadratic residue and one g is not 
There can, therefore, then be at most one F. P. R9 On the other hand, for 
p = +1 (mod 4), consider 

g2 = -gi™1 • 

If gi is primitive, and g2 is of order m, then 

gi s (-1) . 

Therefore, m is even, and so g2 is primitive also. Thus, gA and g2 are 
both primitive, or neither is. This completes C„ Finally, 

(7) gA + g2 = 1 (mod p) 

and (4) follows from 0 < g < pe 

3. THE ASYMPTOTIC DENSITY 

Let F(x) be the number of primes p ^ x having an F* P. R. (We do 
not distinguish in this count whether p has one or two*) Then with TT(X) being 
the total number of primes ^x, we 

Conjecture: As x->oo, 

(8) ^ H - - -^~~ = 0,2657054465 ••• , 

where 

00 

(9) A = M f1 - „ / * ix ) = 0.3739558136 : IJ i1 - F^T)) 
is Artin?s constants 
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Ar t in or iginal ly conjectured, cf. [ 1 ] , [2, page 81] that if v (x) i s the 

number of p ^ x having a a s a pr imi t ive root , and if 

a $ b n (n > 1) , 

then 

v (x) 
(10) - * ~~ A . 

77 (X) 

Subsequently, [3] i t was found that the heur i s t i c a rgument was faulty for a = 

5, - 3 , and infinitely many o ther a but i t was st i l l considered reasonable for 

a = 2, 3 , 6, 7, 10, e tc . Both heur i s t i ca l ly and empi r i ca l ly , Eqe (10) s e e m s 

c o r r e c t for these a, and Hooley [4] r ecen t ly proved that (10) i s then t rue 

provided one a s s u m e s a sufficient number of Riemann Hypotheses . 

The heur i s t i c a rgument for (8) i s s i m i l a r to that which leads to (10), 

but we mus t modify two of the fac tors in (9). Cons ider the p r i m e s in the 

eight res idue c l a s s e s 

20k + 1, 3 , 7, 9, 1 1 , 13 , 17, 19 . 

Those in 20k + 3, 7, 13 , 17 cannot have an F . P . R. F o r those in 20k + 1 1 , 

19 the factor 

1 2(2 - 1) 

in (9) must be deleted. This represented the probability that a i s not a quad-
ratic residue and therefore could be a primitive root. But for 20k + 11 , 19, 
one of gj and g2 must always be a quadratic nonresidue as we have shown 
with (6). The factor 

1 1 
1 - 5(5 - 1) 
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In (9) represented the probability that a Is not a quintic residue and therefore 
could be a primitive root For 20k + 9, 19 p has no quintic residues since 
these p are not = 1 (mod 5), and so this factor is deleted* For 20k + 1, 
11, p is always = 1 (mod 5), and the factor must be changed to 

1 
5 " 

Therefore, the expected density of p in these eight residue classes 
having an F. P. R. is the following: 

20k + 1 

20k + 3 

20k + 7 

20k + 9 

16A/19 

0 

0 

20A/19 

20k + 11 

20k + 13 

20k + 17 

20k + 19 

32A/19 

0 

0 

40A/19 

As x-> QO , the eight classes of primes are equlnumerous, and so (8) follows 
from this table by averaging these densities* On the other hand, it is known 
that the number of primes in 

20k + 1, 20k + 9 

will generally lag somewhat behind the other six classes since 1 and 9 are 
quadratic residues of 20, cf. [5]. We therefore expect that the convergence 
of F(x)/7T(x) to 27A/38 will be mostly from above. 

The empirical facts are given in Table 2* 

X 

500 

1000 
1500 
2000 
2500 

F(x) 

31 
46 

66 

81 

97 

TABLE 2 

95 

168 

239 

303 

367 

F(X)/TT(X) 

0.3263 
0.2738 
0.2762 
0,2673 
0e2643 
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This s e e m s thoroughly sa t i s fac tory , 

It s e e m s l ikely that one could t r a n s c r i b e Hooley?s theory [ 4 ] to the 

p r e sen t var ian t , and thereby prove (8), assuming a sufficient number of 

Riemann Hypotheses. But the theory in [ 4 ] i s by no means s imple , and th is 

t r anscr ip t ion has not been at tempted so far. 

4. SEVERAL REFERENCES 

Inclos ing , we indicate th ree r e f e r ences re la ted to the concept developed 

h e r e . The idea for a Fibonacci P r imi t i ve Root was suggested by E x e r c i s e 158 

in [2, page 206] . It i s shown the re that if g i s any pr imi t ive root of any 

p r i m e p3 the sequence of f i r s t differences 

(11) g n - g n (mod p) 

i s the same a s the sequence 

(12) g n " d (mod p) 

for some fixed d isp lacement d. If, now, one h a s the f i r s t d powers of g: 

one can obtain all fur ther powers additively from (11). Our const ruct ion he re 

forces d = 1 and therefore allows this additive computation ab initio. 

In [ 6 ] , W. Schooling gives a cur ious method of computing logar i thms 

based on the fact that all powers of 

<p = (1 + \ / l}) /2 

can be computed additively: 

cp2 = cp + 1 , 

cp* = cp2 + cp , 

[Continued on page 181. ] 


