A NOTE ON PYTHAGOGEAN TRIPLETS

HARLAN L. UMANSKY

Emerson High School, Union City, New Jersey

A Pythagorean triplet is defined as a, b, c, in which $a^{2}+b^{2}=c^{2}$. It is well known that, where u and v are any two integers, $a=u^{2}-v^{2}$, $\mathrm{b}=2 \mathrm{uv}$, and $\mathrm{c}=\mathrm{u}^{2}+\mathrm{v}^{2}$.

Triplets like $9,40,41$, and $133,156,205$, are of particular interest because $a+b$ is also a square. Not all Pythagorean triplets possess this property; for example, $3,4,5$, and $20,21,29$.

I have found that, x and y being any two integers, Pythagorean triplets possessing this property can be generated where $u=x^{2}+(x+y)^{2}$ and $\mathrm{v}=2 \mathrm{y}(\mathrm{x}+\mathrm{y})$. Then
I. $\quad a=u^{2}-v^{2}=4 x^{4}+8 x^{3} y+4 x^{2} y^{2}-4 x y^{3}-3 y^{4}$
II. $\quad b=2 u v=8 x^{3} y+16 x^{2} y^{2}+12 x^{3}+4 y^{4}$
III.

$$
c=u^{2}+v^{2}=4 x^{4}+8 x^{3} y+12 x^{2} y^{2}+12 x y^{3}+5 y^{4}
$$

IV.

$$
a+b=\left(2 x^{2}+4 x y+y^{2}\right)^{2}
$$

V.

$$
b+c=\left(2 x^{2}+4 x y+3 y^{2}\right)^{2}
$$

In triplets like $3,4,5$, and $5,12,13$, where $u=v+1$, there is the further property that $a^{2}=b+c$. Of the triplets in the series in which $\mathrm{a}^{2}=\mathrm{b}+\mathrm{c}$, only certain triplets possess the property that $\mathrm{a}+\mathrm{b}$ is also a square. The first six such triplets are listed below:

u	v	a	b	c	
		4	9	40	41
29	28	57	1,624	1,625	
169	168	337	56,784	56,785	

985	984	1,969	$1,938,480$	$1,938,481$
5,741	5,740	11,481	$65,906,680$	$65,906,681$
33,461	33,460	66,921	$2,239,210,120$	$2,239,210,121$

The series of $u^{\prime} s(5,29,169,985, \cdots)$ is a recurrent series which is defined as

$$
u_{n}=6 u_{n-1}-u_{n-2},
$$

where $u_{0}=1$ and $u_{1}=5$.
Since the generator

$$
u=x^{2}+(x+y)^{2}
$$

it can be expressed as the sum of two squares:

$$
\begin{aligned}
& \mathrm{u}_{1}=1^{2}+2^{2}=5 \\
& \mathrm{u}_{2}=2^{2}+5^{2}=29 \\
& \mathrm{u}_{3}=5^{2}+12^{2}=169 \\
& \mathrm{u}_{4}=12^{2}+29^{2}=985 \\
& \mathrm{u}_{5}=29^{2}+70^{2}=5741 \\
& \mathrm{u}_{6}=70^{2}+169^{2}=33,461 \\
& \vdots \\
& \vdots
\end{aligned}
$$

As expressed in this manner, the series of $u^{\prime} s$ forms the recurrent series

$$
\begin{aligned}
& u_{1}=1^{2}+2^{2}=5 \\
& u_{2}=2^{2}+(1+2 \cdot 2)^{2}=29 \\
& u_{3}=5^{2}+(2+2 \cdot 5)^{2}=169 \\
& u_{4}=12^{2}+(5+2 \cdot 12)^{2}=985 \\
& u_{5}=29^{2}+(12+2 \cdot 29)^{2}=5741 \\
& u_{6}=70^{2}+(29+2 \cdot 70)^{2}=33,461 \\
& \vdots \\
& \vdots
\end{aligned}
$$

Pythagorean triplets possessing the properties that (1) $a^{2}=b+c$ and that (2) $a+b$ is a square can be derived in another way.

For a triplet to possess the first property, the necessary and sufficient condition is that $\mathrm{u}=\mathrm{v}+1$:

$$
\begin{gathered}
\left(u^{2}-v^{2}\right)^{2}=2 u v+u^{2}+v^{2} \\
\left(u^{2}-v^{2}\right)^{2}=(u+v) \\
u^{2}-v^{2}=u+v \\
(u-v)(u+v)=u+v \\
u-v=1 \\
u=v+1
\end{gathered}
$$

We already know that for a triplet to possess property (2),

$$
u=x^{2}+(x+y)^{2}
$$

and

$$
\mathrm{v}=2 \mathrm{y}(\mathrm{x}+\mathrm{y}) .
$$

Since $u=v+1$, set

$$
x^{2}+(x+y)^{2}=2 y(x+y)+1
$$

Then

$$
\mathrm{x}= \pm \sqrt{\frac{\mathrm{y}^{2}+1}{2}}
$$

(symbolized by 1) and

$$
y= \pm \sqrt{2 x^{2}-1}
$$

(symbolized by k).
Substituting

$$
x= \pm \sqrt{\frac{y^{2}+1}{2}}
$$

in Eqs. I, II, III, IV, and V, we find that

$$
\begin{gathered}
a=4 y^{2}+4 y l+1 \\
b=12 y^{4}+16 y^{3} 1+8 y^{2}+4 y l \\
c=b+1 \\
a+b=\left(2 y^{2}+4 y l+1\right)^{2} \\
b+c=\left(4 y^{2}+4 y l+1\right)^{2}
\end{gathered}
$$

Now

$$
\pm \sqrt{\frac{y^{2}+1}{2}}
$$

is integral for $1,7,41,239, \cdots$. This is a recurrent series which is defined as

$$
r_{n}=6 r_{n-1}-r_{n-2}
$$

where $r_{1}=1$ and $r_{2}=7$. Substituting alternately the positive and negative values of

$$
\pm \sqrt{\frac{y^{2}+1}{2}}
$$

in a, b, c, we obtain the desired triplets.
Substituting $y= \pm \sqrt{2 x^{2}-1}$ in Eqs. I, II, III, IV, and V, we find that [Continued on page 212.]

