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Combining (5.5) with Theorem (4.4) yields 

(5o6^ Theorem. Using concavity as a spy in a modified Fibonacci search is 
the optimal strategy for reducing the interval of uncertainty of concave 
functions. 

6. FINAL-REMARKS 

From the proof of Theorem (5.6), it is apparent that the proposed search 
strategy for concave function is "min sup" rather than Tfmin max.f? In other 
words j the problem is not well set. Indeed, it makes probably more sense 
for concave functions to decrease the uncertainty in the value of the minimum 
than in its location. 

A similar argument as was used for proving (5.5) can be employed to 
show that for each e > 0 and each positive integer k there is a concave 
function for which the reduction of uncertainty by optimal search is improved 
byless than € over unimodal search. In general, however, the improvement 
will be drastic, in particular if the function is well rounded, so to speak, and 
has a maximum in the interior. 
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