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DEFINITIONS

Fg=0, Fy=1, F ,=F  +F; Ly=2 L =1, L =L +L.

PROBLEMS PROPOSED IN THIS ISSUE

B-232  Proposed by Guy A. R. Guillotte, Quebec, Canada.

In the following multiplication alphametic, the five letters, F, Q, I, N,
and E represent distinct digits. The dashes denote not necessarily distinct
digits. What are the digits of FINE FQ ?

FQ
_rQ
FINE
B-233 Proposed by Harlan L. Umansky, Emerson High School, Union City, N. J.

Show that the roots of

2 — — =
Fn—lx an Fn+1 0
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are x = -1 and x = Fn+1 /Fn—l' Generalize to show a similar result for

all sequences formed in the same manner as the Fibonacci sequence.

B-234  Proposed by W. C. Barley, Los Gatos High School, Los Gatos, California
Prove that

3 =z 3 3 2
Ln 2Fn—1 + Frl + GFn—an+1 .

B-235  Proposed by Phil Mana, University of New Mexico, Albuguergue, New Mexico.

Find the largest positive integer n such that Fn is smaller than the

sum of the cubes of the digits of Frl .

B-236  Proposed by Paul §. Bruckman, San Rafael, California.

Let Pn denote the probability that, in n throws of a coin, two consec-
utive heads will not appear. Prove that
-n

Pn = 2 Fn+2

B-237  Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California.

Let (m,n) denote the greatest common divisor of the integers m and

(i) Given (a,b) = 1, prove that (a% +b?%, a®+ 2ab) is 1 or 5.

(ii) Prove the converse of Part (i).

APOLOGIES FOR SOME OMISSIONS

Following are some of the solvers whose names were inadvertently
omitted from the lists of solvers of previous problems:

B-197 David Zeitlin

B-202 Herta T. Freitag, N. J. Kuenzi and Robert W. Prielipp

B-203 Herta T. Freitag and Robert W. Prielipp

B-206 Herta T. Freitag

B-207 Herta T. Freitag
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SOLUTIONS
LUCKY 11 MODULO UNLUCKY 13

B-214  Proposed by R. M. Grassl, University of New Mexico, Albuquerque, New Mexico.

Let n be a random positive integer. What is the probability that Ln
has a remainder of 11 on division by 13? [Hint: Look at ‘the remainders for
n=1,2,3,4,5,6, °.]

Composite of solutions by Peul S. Bruckman, San Rafael, California, and Phil Mana, Albuquer-
que, New Mexico.

Let Rn be the remainder in the division of Ln by 13. Then

R = R

42 i1 T Rn (mod 13) .

Calculating the first 30 values of R» one finds that Ry9 = 1 = Ry and Ry =
3 = Ry. It then follows from the recursion formula that Rn+28 = Rn' The
only n's with Rn =11 and 1=n= 28 are n =5, 9, and 14. Hence, in
each cycle of 28 terms, the remainder 11 occurs exactly 3 times. Therefore,

the required probability is 3/28.

Also solved by Debby Hesse and the Proposer.

QUOTIENT OF POLYNOMIALS
B-215  Proposed by Phil Mana, University of New Mexico, Albuguerque, New Mexico.

Prove that for all positive integers n the quadratic q(x) = x®2 -x-1

is an exact divisor of the polynomial

_ 2n n n
Pn(x) = x7 - Lnx + (-1)

and establish the nature of pn(x)/q(x). [Hint: Evaluate pn(x)/q(x) for n =
1, 2, 3, 4, 5.]
Solution by L. Carlitz, Duke University, Durham, North Carolina.

Let @,B denote the roots of x* - x - 1. Since Ln = an +Bn, it is clear
that
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. x2n - Lnxn + (-1) (Xn _ an)(xn _ Bn)
Q X, = =
n 2 _x -1 & - a)x - p)
is a polynomial,
To find the coefficients of Qn(x) we put
n-1 n-1
r n-r-1 s _n-s-1
Q0 = X T Y 6
r=0 =0
2n-2 2n-2
- Z XZn—k—Z Z arﬁs - E XZn—k—z ¢
k= r+s=k k=
r<n,s<a
say. Then for k =n -1,
k+1 k+1
- 5 ros _«a - B -
o = DI - — = R,
r+s=k
For k= n, we have
n-1 2n-k-2
- —n+ i 2n-k-i-
o = Z arﬁkr=(aﬁ)kn12 ajﬁnka
r=k-n-+1 j=0
k-n+1
= (1) F2n—k—1 :

Also solved by Paul S. Bruckman, Ralph Garfield, G. A. R. Guillotte, Herta T. Freitag, David Zeitlin, and
the Proposer.

A NONHOMOGENEOUS RECURSION
B-216  Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California.

Solve the recurrence D =D + L -1 for D_, subject to the
n+l n 2n n
initial condition Dy = 1.
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Solution by David Zeitlin, Minneapolis, Minnesota.

Since Dy = 0 and

we have, with n replaced by k in the recurrence,

n-1 -1 -1
Dy =, My = D) = JTCD + 37 Ly
k=0 k=0 k=0

-n + 1 + L2n—1
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Also solved by Paul S. Bruckman, Herta T, Freitag, Ralph Garfield, G. A. R. Guillotte, and the Praposer.

MODIFIED PASCAL TRIANGLE

B-217  Proposed by L. Carlitz, Duke University, Durham, North Carolina.

A triangular array of numbers A(@,k) @ =0,1, 2, °**, 0 =k =n)

is defined by the recurrence

Am +1,k) = A(n, k - 1) + (n + k + 1)A@,k) 1 =k

together with the boundary conditions

An,0) =nt, A@®n =1.

Find an explicit formula for A(n,k).

Solution by Paul S. Bruckman.

Let A(n,k) = (n!/k!)B(n,k). Substituting this expression in the given

recursion, we obtain
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[(m+1) /B +1,k) = [0/ -1)]B@, k - 1)

+ [@ + k + 1)n! /k! |Bn,k) .
Multiplying throughout by k!/n! gives us
(n + 1)Bl + 1, k) = kB, k - 1) + (0 + k + 1)B(n,k)
or
@ (@ +1)[B + 1, k) - B, k)] = k[B@, k - 1) + B, k)] .

Next we demonstrate that recursion (1) is satisfied by

Bn, k) = (E) .

(i) (1) (k) e (323) - (3):
weo|(n1) ()] o) - o0 1):
o) @) +0)

B, k) = (E)

satisfies (1). The boundary conditions for this B(n,k) are B(,0) = 1

B(n,n), which lead to the desired boundary conditions for
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i 2 1132
Almk) = @/kDB@,k) = n—;(n) - (n—k)!<n) S LY
ki\k k (n - 1)1 ()2

Also solved by David Zeitlin and the Proposer.

ARCTAN OF A SUM EQUALS SUM OF ARCTANS

B-218  Proposed by Guy A. R. Guillotte, Montreal, Quebec, Canada.
Let a = (1 + N5)/2 and show that

0 ©0
Arctanz [1/@F , + F))] = Z Arctan (1/Fy .4 -
n=1 n=1

Solution by L. Carlitz, Duke University, Durham, North Carolina.
n+i

Since aFn +1 + Fn =a and
(=]
R bt
n+i afa - 1) i
a
n=1

the stated result may be replaced by

o0
T 1
(*) - = arctan .
12 -~
n:
Now
B S S
F T F
2n+1
arctan Fl— - arctan T 1 = arctan “2n  2ndd T o
2n 2n+1 1+ T
2n- 2n+1
F
_ 2n-1 _ 1
= arctan LN N arctanF ’

ZnF2n+1 2n+2
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using the well-known identity FZn—len 42" FZnFZn = 1, Hence
arctan i 1 = arctan F-l_ - arctan 7 1
2n+1 2n 2n+2

Take n =k, k+1, k+2, **° and add the resulting equations. We get

F

o0
Z arctan 1 = arctan L .
=% 2n-+1

In particular, for k = 1, this reduces to ().

Also solved by Paul S. Bruckman, David Zeitlin, and the Proposer.

HILBERT MATRIX
B-219.  Proposed by Tomas Djerverson, Albrook College, Tigertown, New Mexico.

Let k be a fixed positive integer and let ay, ay, °*°, a be fixed real

numbers such that, for all positive integers n.

a, ay a

T Tn 1T nDTE

Prove that ayg = a4 = <>

i
jod
2
I
e

Solution by David Zeitlin, Minneapolis, Minnesota,

For n=1,2, ..., k+1, we have a homogeneous system of (k+ 1)
linear equations in the k +1 unknowns: ay, a3, **°, ap. The coefficient
matrix is the well-known Hilbert matrix, which is non-singular. Thus, the
determinant of the system is non-zero; and so, by Cramer's rule, ay = a4 =

8y = +o0 = ap =0,

Also solved by Paul S. Bruckman and the Proposer.

L ate aeo o



