GENERALIZED FIBONACCI NUMBERS IN PASCAL’S PYRAMID

~ V.E.HOGGATT, JR.
San Jose State College, San Jose, California

1. INTRODUCTION

It is well known that the Fibonacci numbers are the rising diagonals of
Pascal's triangles. Harris and Styles [2] generalized the Fibonacci numbers
to other diagonals. Hoggatt and Bicknell further generalized these to other
Pascal triangles in [3]. Mueller in [5] discusses sums taken over planar
sections of Pascal's pyramid. Here we further extend the results in [5] to
many relations with the Fibonacci numbers.

In [1] many nice derivations were obtained using generating functions
for the columns of Pascal's binomial triangle. Further resultswill be forth—

coming in [6]. The earliest results were laid out by Hochster in [7].

2. COLUMN GENERATORS

The simple Pascal pyramid has column generators, when it is double

left-justified, which are

m+n (m + n
X n

G - m-An+l

m,n 1 - x

These columns can be shifted up and down with parameters p and q. The
parameter p determines the alignment of theleft-most slice of columns and
the parameter ¢ determines the alignment of the slices relative to that left-

most slice. Now the modified simple column generators are

Lpm+aqn (m r:r n)

m-+n+1

1 -x

We desire to get the generating function of the planar section sum se-

quence. Each suchplanar section nowhas summands which are all multiplied

by the same power of x. For instance,
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which was to be expected as each planar section contains the numbers in the
expansion (1 +1 + 1)n.

We next let p and q be utilized.
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Here clearly when p = 2 and q = 3 we get
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the generating function for the Tribonacci numbers,

Tg=0, Ty =1, T, =1, ad T =T +T  +T .

If, on the other hand, we set p =1 and g = 2, then
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the generating function for the Pell numbers, Py, = 0, P, = 1, and Pn 42 =

2P + P . One can get even more out of this.
n+1 n

Let p=t+1 and q = 2t +1; then,
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the generating function for the generalized Fibonacci numbers of Harris and
Styles [2] applied to the trinomial triangle whose coefficients are induced by

the expansions

1 +x + x2)", n=20,1,2,-°°

See also Hoggatt and Bicknell [ 3].
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Let us now take every rth slice in the general p,q case
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where q' = r(q-1), which is the generating function for the generalized
Fibonacci numbers of Harris and Styles U(n; o',r) as applied to the CONVO-
LUTION triangle of the number sequence u(n; p - 1,1) which are themselves
generalized Fibonacci numbers of Harris and Styles in the binomial triangle.

(See "Convolution Triangles for Generalized Fibonacci Numbers' [4].)

3. THE GENERAL CASE

In [5] Pascal's pyramid in standard position has as its elements in a
horizontal plane the expansions of (a +b + c)n, n=20,1, 2, 3, -+ with
each planar section laid out as an equilateral lattice. In our configuration it
is a right isosceles lattice.

The general column generator is

n
m+n+1

LPmtan m n (m + n)

(1 - ax)

and it is not difficult to derive that
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Thus by selecting the five parameters one can get many other known gen-

erating functions.
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Examplel. a =2, b =2, ¢ = -1,

n
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Example 2. a =1, b+c =1, p=q =2, then
o

G=———l——«=EFn+1xn.
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One notes that the condition b + ¢ = 1 allows an infinitude of choices of inte~

gers b and c.

Example 3. Let

a =31 -x%), b=26, ¢c= -1,

o]
1]

2, and q = 4,

then

o0
_ 1 _ m+ 3\ _m
G - -2 ()
m=0

1 - 3x - 6x2 + 3x3 + x4

where II? are the Fibonomial coefficients. See H-78 and [8], or it can be

written as

©0
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The possibilities seem endless.

4, FURTHER RESULTS
Consider
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Now let's take every r— slice:
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where ' =q(r-1). fc=1, a=2, b=-1, p =1r+q', and p = 2,
then
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Recall from [1] and [3] that
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for the generalized Fibonacci numbers in Pascal's triangle so that G is the

generating function for H/(1 - x) or
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Another example: If a =1+x, b=1, p=3, ¢ =1, then
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[Continued on page 293. ]



