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1. INTRODUCTION 

It is well known that the Fibonacci numbers are the rising diagonals of 
Pascal1 s triangles. Harris and Styles [2] generalized the Fibonacci numbers 
to other diagonals* Hoggatt and BIcknell further generalized these to other 
Pascal triangles In [3]. Mueller In [5] discusses sums taken over planar 
sections of Pascal1 s pyramid. Here we further extend the results in [5] to 
many relations with the Fibonacci numbers. 

In [1] many nice derivations were obtained using generating functions 
for the columns of Pascal 's binomial triangle. Further results will be forth-
coming in [6]. The earliest results were laid out by Hochster in [7]. 

2e COLUMN GENERATORS 

The simple Pascal pyramid has column generators, when it is double 
left-justified, which are 
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These columns can be shifted up and down with parameters p and qe The 
parameter p determines the alignment of the left-most slice of columns and 
the parameter q determines the alignment of the slices relative to that left-
most slice* Now the modified simple column generators are 
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We desire to get the generating function of the planar section sum se-
quence* Each such planar section now has summands which are all multiplied 
by the same power of x„ For Instance, 
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which was to be expected as each planar section contains the numbers in the 
expansion (1 + 1 + l ) n . 

We next let p and q be utilized. 
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G = LJ I^J Gm9n = ~ —pT ~q 
n=0 m=0 l - x - x - x 

Here clearly when p = 2 and q = 3 we get 
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- o <* 2LJ n+l ? 

1 - X - X1 - X3
 n 

n=0 

the generating function for the Tribonacci numbers, 

T0 = 0, T l = 1, T2 = 1, and T ^ = T n + 2 + T n + 1 + T n 

If j on the other hand? we set p = 1 and q = 29 then 

1 - 2 x - x n=0 

the generating function for the Pell numbers, P0 = 09 Pt = 1, and P 2 

2P . + P . One can get even more out of this* n+l n to 

Let p = t + 1 and q = 2t + 1; then9 

G = ^ = J ] u(n; t.Dx11 

1 " x " x - x n=0 

the generating function for the generalized Fibonacci numbers of Harris and 
Styles [2] applied to the trinomial triangle whose coefficients are induced by 
the expansions 

(1 + x + x 2 ) n
? n = 0, 1, 2, ••• . 

See also Hoggatt and Bicknell [ 3 ] . 
Consider 

<*> / <*> mp+qn / m + n \ \ °° / °° _ _ ^m / \ 
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Let us now take every r slice In the general p?q case 

xqnr 
*-j rn+1 p qr 
n =0 (1 - x - x p ) 1 - x - x ± _ J L _ r 

(1 - x - x F ) 

r -1 ._ r -1 °o 
= 2 U(n;q\r)xn (1 - X - X P ) _, (1 - X - X P ) 

(1 - x - x P ) r - x r q (1 - x - x P ) r - x r ^ ? n=0 

where q! = r(q - l ) f which is the generating function for the generalized 
Fibonacci numbers of Harris and Styles U(n; q?

sr) as applied to the CONVO-
LUTION triangle of the number sequence u(n; p - 1,1) which are themselves 
generalized Fibonacci numbers of Harris and Styles in the binomial triangle. 
(See "Convolution Triangles for Generalized Fibonacci Numbers" [4]8) 

3„ THE GENERAL CASE 

In [5] Pascal 's pyramid In standard position has as Its elements in a 
horizontal plane the expansions of (a + b + c) 9 n = 0 9 l 9 2 l 3 , 9 * e with 
each planar section laid out as an equilateral lattice. In our configuration it 
is a right isosceles lattice. 

The general column generator is 

xpm+qn, 
G* 

L b m c n ( m +A 
m,n H xm+n+l 

(1 - ax) 

and it is not difficult to derive that 

JLJ L~J m9n 
n=0 m==0 1 - ax - bxp - cxq 

Thus by selecting the five parameters one can get many other known gen-
erating functions. 
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Example 1. a = 2$ b = 2, c = - 1 , p = 2 , q = 39 

G = -1 — = V F ^F _,_0xn 

1 - 2x - 2x2 + X3 ^ n+1 n+2 
n=Q 

Example 2* a = 1, b + c = 1 ? p = q = 2 9 then 

G = - — — L _ = ^ F w . M x 
1 - x - x2

 A 
n=0 

n 

One notes that the condition b + c = 1 al lows an infinitude of choices of inte-

g e r s b and c, 

Example 39 Let 

a = 3(1 - x 2 ) s b = 6, c = - 1 , p = 29 and q = 49 

then 

G = 
1 - 3x - 6x2 + 3x3 + x4

 A 
m=0 

(?) where I 1 a r e the Fibonomial coefficients. See H-78 and [ 8 ] , o r i t can be 

wri t ten as 

m=0 

The poss ib i l i t ies seem end less . 

OO 
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Consider 

4„ FURTHER RESULTS 
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n=0 m=0 

x pm b m 
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c x M 

(1 - ax) I (1 - ax) 

Now let1 s take every r slice* 

G (cxq) 
rn r -1 

(1 - ax - bxp) 
rn+l 

n=0 (1 - ax: - bxp) (1 - ax - bxp) - c r x r + q f 

where qf = q(r - 1). If c = 1, a = 29 b = - 1 , pf = r + q?
9 and p = 29 

then 

G = (1 - x) 2r-2 
(1 „ x ) 2 r „ X 2r + P ' 

Recall from [1] and [3] that 

H = - A j L ^ _ ^ = £ U(n; p,q)xn 

( 1 " x ) " x n=0 

for the generalized Fibonacci numbers in Pascal1 s triangle so that G is the 
generating function for H/(l - x) or 

n=0 
£ ) u(k; p \ 2r) 
k=0 

Another example; If a = 1 + x, b = 1, p = 39 c = l s then 

r - 1 
2 _ v 3 l (1 - X - X2 - X3) 

(1 - X - X2 - X3) - X" r+qf 

[Continued on page 293e ] 


