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H-195 Proposed by Verner £ Hoggatt, Jr., San Jose State College, San Jose, California 

Consider the array indicated below: 
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(i) Show that the row sums are F„ , n ^ 2. 
(ii) Show that the rising diagonal sums are the convolution of 

( F 2 n - l ^ = 0
 a n d { ^ 2 , 2 ) } ; = 0 , 

the generalized numbers of Harr i s and Styles. 

H-196 Proposed by J. B. Roberts, Reed College, Portland, Oregon. 

(a) Let A0 be the set of integral par ts of the positive integral multiples of r, where 

1 + ^ 5 
T = „ — 

413 
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and let A - , m = 0, 1, 2, • • • , be the set of integral par t s of the numbers nr2 

for n 61 A . Prove that the collection of Z of all positive integers is the disjoint 
union of the A.. 

J 
(b) Generalize the proposition in (a). 

H-197 Proposed by Lawrence Somer, University of Hi in o is, Urbana, Illinois. 

n 
sion relationship: 

Let { i r } _ be the t-Fibonacci sequences with positive entries satisfying the recur -
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SOLUTIONS 
HYPER -TENSION 

H-185 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 

(1 - 2x)n = £ ( - D n " k ( n
 2

+
k

k ) ( 2
k

k ) (1 - v ) n - k
2 F l [-k; n + k + 1; k + 1; x] 

k=0 ^ / \ / 

where 2 F i [a ,b ; c; x] denotes the hypergeometric function. 

Solution by the Proposer. 

We star t with the identity 

r s E (2r + 3s)! (y - z) z _ 

r!s!(r + 2s)! ^ + .2r+3s+l 1 - y - z 
r , s=0 y* 

Now put y = u + v, z = v, so that 

frv V ( 2 r + 3s)L u v = 1 
1 ; JLJ r l s l ( r + 2s)l ,- + ,2r+3s+l 1 - u - 2v 

r . s=0 * U v ' 
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The right-hand side of (*) is equal to 

n=0 

while the left-hand side 

oo oo 

E (2r + 3s)l r s V 1 / -x\kf2r + 3s + k \ , ^ ± 
r l s l ( r + 2s)l U V ^ {~1} { k J ( U + V) 

r , s=0 k=0 

It follows that 

, , . ,n \ "^ , , ,k v ^ . n x k / 2 r + 3s + k \ (2r + 3s)l r s 
<u + 2 v > = L <u + v) L ('1] \ k J rl8l(r + 2s)l U v 

k=0 r+s=n-k 

E , i x n - r - s (r + 2s + n)l r s , , vn-r-s 

W r '.si(r + 2s)l (n - r - s)l u v ( u + v ) 
r+s<n 

n . k 
An-k E t l Nn-k (u + v) \7* (s + n + k)l k-s s 

("1 } (n - k)l L* sl<k - s)l(k + s)i u v ' 
k=0 s=0 

Taking u = 1, v = -x , we get 

(1 - 2x)n = £ (-Dn"k EMV- 'MI (1 " V)n_k ^ ^ n + k + 1; k + 1; X] 
klkl(n - k)t 

k=0 

A CONGRUENCE IN ITS PRIME 

H-186 Proposed by James Desmond, Florida State University, Tallahassee, Florida. 

The generalized Fibonacci sequence is defined by the recurrence relation 

u , + u = u ^ , 
n-1 n n+1 

where n is an integer and U0 and Û  a re arbi t rary fixed integers. 
For a prime p and integers n, r , s and t, show that 

u _, = U ^ (mod p) , np+r sp+t x ^ 3 
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if p = ±1 (mod 5) and n + r = s + t, and that 

U _,_ = ( - l ) r + t U ^ (mod p) np+r sp+t ^ 

if p = ±2 (mod 5) and n - r = s - t. 

Solution by the froposer. 

We have from Hoggatt and Buggies, "A P r i m e r for the Fibonacci Sequence — Par t III ," 
Fibonacci Quarterly, Vol. 1, No. 3, 1963, p. 65, and by Fe rma t ' s theorem, that 

p 
F ^ = V* ( ? V-^ F1 FP"i = F FP .. + F _, FP = F F - + F _,_ F (mod p) 

np+r L^d 1 1 1 l+r n n-1 r n-1 p+r n r n-1 p+r n v 

i=0 x / 

for all n and r. From I. D. Ruggles, "Some Fibonacci Results Using Fibonacci-Type Se-
quences," Fibonacci Quarterly, Vol. 1, No. 2, 1963, p. 79, we have that 

F .^ . = F. . F . + F .F . -1+3 l + l j I j -1 

for all i and j . Therefore, 

F _,_ = F F , + F ^ F F + F F . F (mod p) 
np+r r n-1 r+1 p n r p -1 n ^ 

for all n and r. We have from Hardy and Wright, Theory of Numbers, Oxford University 
P r e s s , London, 1954, p. 150, that 

F _- = 0 (mod p) and F = 1 (mod p) 

if p = ±1 (mod 5), and that 

F + i - • ° (mod p) and F = 1 (mod p) 

if p = ±2 (mod 5). Let p = ±1 (mod 5) and n + r = s + t. Then 

F _,_ = F F n + F ^ n F E F ^ (mod p) np+r r n-1 r+1 n r+n v' 

for all n and r. Therefore 

F .* = F ^ = F ^ = F _,_ (mod p). sp+t s+t n+r np+r * 

It is easily verified by induction that 
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U = t L F + UnF n n I n 0 n-1 

for all n. Therefore 

U n p + r s U l F n p + r + U 0 F n p + r - l = U l F
s p + t + U 0 F

S p + t - l S U sp + t < m o d P> • 

Now, let p = +2 (mod 5) and n - r = s - t. From page 77 of the reference to Ruggles, we 
have 

F .^ . - F.L. = ( - l ) j + 1 F . . 
i+J 1 3 i-3 

for all i and j . Therefore 

F ^ = F F - - F , - F + F F E F F - + F ^- F - 2F , - F + F F np+r r n-1 r+1 n r n r n-1 r+1 n r+1 n r n 
= F ^ - L F = ( - l ) r + 1 F (mod p) 

r+n r n ' n - r F 

for all n and r . Thus 

( - l ) r + t F _,. = ( - l ) r + t ( - l ) t + 1 F . = ( - l ) r + 1 F = F _,_ (mod p) . 
v sp+t \ / \ / s _ t n - r np+r v 

Hence 
U n p + r = U l F n P + r + U 0 F n P + r - l B U l ( - 1 ) r + t F s P + t + V- l ) ' - 1 * - 1 F

sp+t-l 
B ( " 1 ) r + t ( U l F s P + t + U 0 F

s p + t - l > - < - 1 ) r + t u s P + t ( m o d P>" 

FIBONACCI IS A SQUARE 

H-187 Proposed by Ira Gessel, Harvard University, Cambridge, Massachusetts. 

Problem: Show that a positive integer n is a Fibonacci number if and only if either 
5n2 + 4 or 5n2 - 4 is a square. 

Solution by the Proposer. 

Let F0 = 0, F4 = 1, F - = F + F _- be the Fibonacci ser ies and L0 = 2, ^ = 1, 
L ,- = L + L n be the Lucas se r ies . It is well known that r+1 r r - 1 

(1) (-I)" + F*r = F r + 1 F r _ 1 

(2) L r = F r + 1 + F r _ x 

Subtracting four times the first from the square of the second equation, we have 

whence 
L2 _ 4 ( - l ) r - 4F2 = (F _,, - F - )2 = F2 , r r r+1 r - 1 r 

5F2 + 4 ( - l ) r = L2 . r r 
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Thus if n is a Fibonacci number, either 5n2 + 4 or 5n2 - 4 is a square. 
I have two proofs of the converse. 
F i r s t Proof. We use the theorem (Hardy and Wright, An Introduction to the Theory of 

Numbers, p. 153) that if p and q are integers , x is a real number, and |(p/q) - x | < 
l /2q2 , then p /q is a convergent to the continued fraction for x, and that (Hardy and Wright, 
p. 148) the convergents to the continued fraction for (1 + *s/5)/2 in lowest t e rms are F - / 
F . r 

Assume that 5n2 ± 4 - m2. Then since m and n have the same parity, k = (m + n)/2 
is an integer. Then substituting m = 2k - n in 5n2 ± 4 = m2, we get k2 - kn - n2 = ±1, 
so that k and n are relatively pr ime and 

±l /n2 = (k/n)2 - (k/n) - 1 = [(k/n) - (N/5 + l ) /2 ] [(k/n) + (\/5 - l ) /2 ] . 

Thus 

| (k/n) - (s/5 + l ) / 2 | = 1/n2 | (k/n) + (^5 - l ) / 2 | . 

Since 1 is a Fibonacci number, we may assume n ^ 2. Then 

(2k - n)2 = m2 ^ 5n2 - 4 = 4n2 + (n2 - 4) ^ 4n2 , 

so 2k - n ^ 2n, whence k/n 2= 3/2. Thus (k/n) + (\/"5 - l ) / 2 > 2, so by the two theorems 
quoted above, k/n = F - / F for some r , and since both fractions are reduced, n = F . 

Second Proof. Assume 5n2 ± 4 = m2. Then m2 - 5n2 = ±4, so 

m + \/5n m - N/5n _ n 
" 2 * 2 ±l ' 

and since m and n have the same parity, 

m + \ r5n , m - V5n _ — _ and * 

are integers in Q ( N / 5 ) , where Q is the rationals, and since their product is ±1, they are 
units. It is well known (Hardy and Wright, p. 221) that the only integral units of Q(\/I>) are 
of the form ±x~ , where x = (1 + \/"5 )/2. 

Then we have 

(m + ^ 5 n ) / 2 = x r = \ (xr + y r ) + f L ^ ^ L • N/5 , 2 L ^ 5 J 

where y = -1/x . Now x. + y = L and 
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(X
r - y r ) / ^ 5 = F r 

(Hardy and Wright, p. 148). Thus 

| ( m + N/5n) = | ( L r + ^ 5 F r > , 

so n = F . 

SUM SERIES 

H-189 Proposed by L Carlitz, Duke University, Durham, North Carolina (Corrected). 

Show that 

(2r + 3s)l (a - b y ) r b S y r + 2 s 

^ r l s ! ( r + 2s)l H _, ,2r+3s+l , , 2 

r 9 S = 0 ' (1 + ay) 1 - ay - by2 

Solution by the Proposer. 

Put 

i - ar 

so that 

1 - ax - bx2
 A 

m=0 

m x m 

1 = E * 
(1 - ax - bx2)(l - y) n ' 

J m,n=0 

v n i n 
x y 

Replacing y by x" y this becomes 

1 V ^ m ~ n n 

• -z / J G x y 
m,n=0 (1 - ax - bx2)(l - x y) 

Hence that par t of the expansion of 

(1 - ax - bx2)(l - x V ) 

that is independent of x is equal to 
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(*) 
1 - ay - by2 

On the other hand, since 

(1 - ax - bx2)(l - x~ y) = (1 + ay) - x(a - by) - bx2 - x" y , 

we have 

(1 - ax - b x ^ U - x - V ) " 1 = £ [ ^ a - b ^ + b x ^ + x - V l 

vT, S t E (r + s + t)l (a - by) b y r+2s- t 
rlsltl ,- ^ x r + s + t + l x 

r,s,t=0 ( 1 + a ^ 

The par t of this sum that is independent of x is obtained by taking t = r + 2s. We get 

E (2r + 3s)l (a - b y ) V y r 2 s 

rT.sI(r + 2s)l ,.. , v2r+3s+i 
r , s=0 ( 1 + a y ) 

Since this is equal to (*), we have proved the stated identity. 

IT 'S A MOD WORLD 

H-190 Proposed by H. H. Ferns, Victoria, British Columbia. 

Prove the fo l lowing 

2 r F = n (mod 5) 

2 r L = 1 (mod 5) , 

where F and L are the n Fibonacci and n Lucas numbers , respectively, and r is 
the least residue of n - 1 (mod 4). 

Solution by the Proposer. 

In an unpublished paper by the proposer , it i s shown that 

^\- E (2k
n

+1) 5 k 

k=0 
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Hence 

IT] 
k=l x ' 

Thus 

5 k . 

2 n 1 F n = n (mod 5) 

Let n - 1 = 4m + r , where 0 < r < 4. Then 

But 

Hence 

2 F = 2 F = 2 2 F = n (mod 5) . 

24m = (24}m ^ 1 ( m o d 5 ) ^ 

To prove 

use 

2 r F = n (mod 5) . 

2 r L = 1 (mod 5) , 

M 
k=0 % ' 

(which is derived in the same paper) and proceed as above* 

JUST SO MANY TWO'S 

H-192 Proposed by Ronald Alter, University of Kentucky, Lexington, Kentucky. 

I f 
3n+l 

c 
n 

3=0 

•M1+J. 

. • s (%: JH 
prove that 

c = 2
6 n + 3 . Ns (N odd, n >0) . 

n 

Solution by the Proposer. 

In the sequence 

bk = b k - l " 3 b k - 2 ' ( k " l j bi = b2 = D > 

it is easy to show that 2 is the highest power of 2 that divides b. if and only if k = 3 
(mod 6), Also, by deriving the appropriate Binet formula, it follows that 



422 ADVANCED PROBLEMS AND SOLUTIONS [Oct. 

Thus ^im-c-^ i - »-
k ^ 1 

2 
j=o 

The desired result follows by observing 

6n+3 6n+2 n * 

Editorial Note: Please submit solutions for any of the problem proposals. We need fresh 
blood! 

A GOLDEN SECTION SEARCH PROBLEM 

REXH.SHUDDE 
Waval Post Graduate School, Monterey, California 

After tiring of using numerous quadratic functions as objective functions for examples 
in my mathematical programming course , I posed the following problem for myself: Design 
a unimodal function over the (0,1) interval which is concave, has a maximum in the interior 
of (0,1), and is not a quadratic function. The purpose was to demonstrate numerically the 
golden section search.* 

My first thoughts were to add two functions which are concave over the (0,1) interval 
with the property that one goes to -°o at 0 and the other goes to -°o at 1. My two initial 
choices were log x and l / (x - 1). The golden section search s tar t s at the two points xt = 
1 - (1/0) and x2 = l/(p where 0 = (1 + N / 5 ) / 2 . After searching with 8 points, I noticed that 
the interval of uncertainty still contained the first search point so I thought it about time to 
find the location of the maximum analytically. I was dumfounded to discover that if I contin-
ued indefinitely with the search my interval of uncertainty would still contain the initial search 
point. 

* Douglas J. Wilde, Optimum Seeking Methods, Prentice Hall, Inc. (1964). 


