PERFECT N-SEQUENCES FOR N, N+I, AND N+2

GERALD EDGAR Boulder, Colorado

Frank S. Gillespie and W. R. Utz [1] define a (generalized) perfect n-sequence for m (where $n \ge 2$, $m \ge 2$) to be a sequence of length mn in which each of the integers 1, 2, 3, ..., m occurs exactly n times and between any two occurrences of the integer x there are x entries. Examples of perfect 2-sequences are numerous: $3 \ 1 \ 2 \ 1 \ 3 \ 2 \$ for m = 3 and $4 \ 1 \ 3 \ 1 \ 2 \ 4 \ 3 \ 2$ for m = 4 are the simplest. However, the author knows of no perfect n-sequence if $n \ > 2$.

No perfect n-sequence for m exists if $m \le n$ [1]. (This is a direct corollary of Lemma 1, below.) It will be proved here that no perfect n-sequence for m exists if m = n, m = n + 1, or m = n + 2 (except for the perfect 2-sequences for 3 and 4), extending the result slightly.

In a perfect n-sequence for m, if x is an integer and $1 \le x \le m$, then there are n x's in the sequence. The positions in the sequence will be numbered, in order, starting at the left, 1, 2, 3, ..., mn. Let "p(x,i)" mean "the position of the ith occurrence of the integer x". The first occurrence of an integer will have special significance; let $P_x = p(x, 1)$.

Example. In the sequence $1\ 7\ 1\ 2\ 6\ 4\ 2\ 5\ 3\ 7\ 4\ 6\ 3\ 5$, $p(6,1) = P_6 = 5$, p(4,2) = 11, $P_2 = 4$, etc.

Note that p(x,i) is meaningful if $1 \le x \le m$ and $1 \le i \le n$, and P_x is meaningful if $1 \le x \le m$.

In a perfect n-sequence for m

(1)
$$p(x,i) = P_x + (x + 1)(i - 1)$$
 $(1 \le x \le m; 1 \le i \le n)$

which follows from the recursive formula (for $i \ge 2$)

$$p(x,i) = p(x, i - 1) + (x + 1)$$

Theorem 1. There is no perfect n-sequence for n.

Proof. Assume such a sequence exists. Then it has n^2 entries. Also

$$P(n,n) = P_n + (n + 1)(n - 1) = P_n + n^2 - 1$$

so that P_n must be 1.

(2)

It is impossible that $1 \le P_{n-1} \le n$; otherwise $p(n-1, P_{n-1})$ and $p(n, P_{n-1})$ are meaningful and

$$p(n - 1, P_{n-1}) = P_{n-1} + nP_{n-1} - n = p(n, P_{n-1})$$

using (1) and $P_n = 1$. But this is impossible since an n and an n - 1 cannot occupy the same position.

It is impossible that $n + 1 \le P_{n-1}$; otherwise $p(n - 1, n) \ge n^2 + 1$, but the largest position is n^2 .

Now $1 \leq n-1 \leq n$ (since $n \geq 2$) so that P_{n-1} is a positive integer, and we have a contradiction.

<u>Theorem 2.</u> There is no perfect n-sequence for n + 1, except the perfect 2-sequence for 3.

<u>Proof.</u> Assume such a sequence exists. Then there are $n(n + 1) = n^2 + n$ entries. Also,

$$p(n + 1, n) = P_{n+1} + n^2 + n - 2$$

so that either $P_{n+1} = 1$ or $P_{n+1} = 2$. If $P_{n+1} = 2$, then $p(n+1, n) = n^2 + n$, the last position, but since a perfect sequence taken in reverse order is still a perfect sequence, this case is symmetrical to the case $P_{n+1} = 1$. Hence only the case $P_{n+1} = 1$ need be considered.

It is impossible that $1 \le P_n \le n$; otherwise $p(n, P_n) = p(n+1, P_n)$. It is impossible that $n+2 \le P_n$; otherwise $p(n, n) \ge n^2 + n + 1$. Therefore the only possibility is $P_n = n+1$. Now we have $P_{n+1} = 1$ and $P_n = n+1$.

It is impossible that $1 \leq P_{n-1} \leq n-1$; otherwise $p(n-1, P_{n-1}+1) = p(n, P_{n-1})$. It is impossible that $n+1 \leq P_{n-1} \leq 2n$; otherwise $p(n-1, P_{n-1}-n) = p(n, P_{n-1}-n)$. It is impossible that $2n+1 \leq P_{n-1}$; otherwise $p(n-1, n) \geq n^2 + n + 1$. Therefore the only possibility is $P_{n-1} = n$.

It is impossible that $1 \le P_{n-2} \le n-1$; otherwise

$$p(n - 2, P_{n-2} + 1) = p(n - 1, P_{n-2}).$$

It is impossible that $n \leq P_{n-2} \leq 2n - 1$; otherwise

$$p(n - 2, P_{n-2} - n + 1) = p(n - 1, P_{n-2} - n + 1).$$

It is impossible that $2n \leq P_{n-2} \leq 3n - 2$; otherwise

$$p(n - 2, P_{n-2} - 2n + 1) = p(n - 1, P_{n-2} - 2n + 2)$$
.

It is impossible that $P_{n-2} = 3n - 1$; otherwise p(n - 2, n) = p(n, n). It is impossible that $3n \le P_{n-2}$; otherwise $p(n - 2, n) \ge n^2 + n + 1$. If $n \ne 2$, then $1 \le n - 2 \le n$ and P_{n-2} is a positive integer, a contradiction. The only possibility is therefore n = 2.

From these two theorems some patterns can be seen. They are formulated in the following lemmas.

Lemma 1. In a perfect n-sequence for m, if $1 \le n - r \le m$, then

$$P_{n-r} \leq mn - n^2 + nr - r + 1.$$

In particular, in a perfect n-sequence for n + i, $P_{n-r} \le nr + in - r + 1$. <u>Proof</u>. If $P_{n-r} \ge mn - n^2 + nr - r + 1$, then $p(n - r, n) \ge mn$, which is impossible since the largest position is mn.

Lemma 2. In a perfect n-sequence for m, if ${\rm P}_x$ and ${\rm P}_{x+1}$ are meaningful, then it is impossible that

(3)
$$P_{x+1} + (i - 1)x + (2i - 2) \le P_x \le P_{x+1} + (i - 1)x + (i - 2) + n$$

for any integer $i \ge 1$, or that

(4)
$$P_{x+1} + (i - 1)x + (i - 1) \le P_x \le P_{x+1} + (i - 1)x + (2i - 3) + n$$

for any integer $i \leq 1$.

Proof. Assuming (3) to hold (with $i \ge 1$), we have

(5)
$$P_{x+1} + (i - 1)x + (2i - 2) \leq P_x$$

(6)
$$P_x \leq P_{x+1} + (i - 1)x + (i - 2) + n.$$

It follows from (5) and (6), respectively, that

(7)
$$P_{x+1} + (i - 1)x + (i - 1) \le P_x$$

(8)
$$P_x \leq P_{x+1} + (i - 1)x + (2i - 3) + n.$$

From (5) and (8) follows

(9)
$$1 \leq P_x - P_{x+1} - ix + x - 2i + 3 \leq n$$
,

and from (7) and (6) follows

(10)
$$1 \leq P_x - P_{x+1} - ix + x - i + 2 \leq n$$
.

Finally, we have

(11)
$$p(x, P_x - P_{x+1} - ix + x - 2i + 3) = p(x + 1, P_x - P_{x+1} - ix + x - i + 2),$$

which is meaningful by (9) and (10). But (11) is obviously false, hence (3) cannot hold if $i \ge 1$. The proof of the second half is identical.

Corollary to Lemma 2. If P_x and P_{x+1} are meaningful, then either

$$P_{x+1} + (i - 1)x + (i - 2) + n \le P_x \le P_{x+1} + ix + 2i$$

for some $i \ge 1$, or

$$P_{x+1} + (i - 1)x + (2i - 3) + n \le P_x \le P_{x+1} + ix + i$$

for some $i \leq 0$.

<u>Theorem 3.</u> There is no perfect n-sequence for n + 2, except the perfect 2-sequence for 4.

<u>Proof.</u> This sequence has $n^2 + 2n$ entries. By Lemma 1, the only possibilities for P_{n+2} are (case I) $P_{n+2} = 1$, (case II) $P_{n+2} = 2$, and (case III) $P_{n+2} = 3$.

<u>Case I.</u> $P_{n+2} = 1$. By Lemma 1 and the Corollary to Lemma 2, the only possibilities for P_{n+1} are (case IA) $P_{n+1} = n+1$ and (case IB) $P_{n+1} = n+2$.

<u>Case IA</u>. $P_{n+1} = n + 1$. By the lemmas, the only possibilities for P_n are 1, n - 1, n, n + 1, and 2n + 1. But $P_n = 1$ is impossible; otherwise p(n,1) = p(n + 2,1); $P_n = n + 1$ is impossible; otherwise p(n,1) = p(n + 1,1). Therefore there are three possibilities: (case IA1) $P_n = n - 1$, (case IA2) $P_n = n$, and (case IA3) $P_n = 2n - 1$.

<u>Case IA1.</u> $P_n = n - 1$. The possibilities for P_{n-1} are n-2, 2n-1, 3n-1, and 3n. But n even is impossible; otherwise p(n, n/2) = p(n+2, n/2); so n is odd; $P_{n-1} = n-2$ is impossible; otherwise p(n-1, (n+1)/2) = p(n+1, (n-1)/2); $P_{n-1} = 3n - 1$ is impossible; otherwise p(n-1, n) = p(n+1, n); $P_{n-1} = 3n$ is impossible; otherwise

$$p(n - 1, (n - 1)/2) = p(n + 1, (n + 1)/2);$$

Therefore $P_{n-1} = 2n - 1$. The possibilities for P_{n-2} are n-1, 4n-2, and 4n-1. But $P_{n-2} = n-1$ is impossible; otherwise p(n-2,1) = p(n,1); $P_{n-2} = 4n-2$ is impossible; otherwise (noting that $1 \le (n+3)/2 \le n$ since $n \ge 2$ and n is odd)

$$p(n - 2, (n - 1)/2) = p(n, (n + 3)/2);$$

 $P_{n-2} = 4n - 1$ is impossible; otherwise p(n - 2, 1) = p(n - 1, 3). But $1 \le n - 2 \le n$ (since $n \ge 2$ and n odd) so that P_{n-2} is a positive integer, which is a contradiction. Therefore case IA1 is impossible.

This first case indicates the methods used. The others are treated similarly. The other cases are:

[Continued on page 392.]