PERFECT \mathbf{N}-SEQUENCES FOR $\mathbf{N}, \mathbf{N}+1$, AND $\mathbf{N}+2$

GERALD EDGAR
Boulder, Colorado

Frank S. Gillespie and W. R. Utz [1] define a (generalized) perfect n-sequence for m (where $n \geq 2, m \geq 2$) to be a sequence of length $m n$ in which each of the integers 1,2 , $3, \cdots, m$ occurs exactly n times and between any two occurrences of the integer x there are x entries. Examples of perfect 2-sequences are numerous: 312132 for $\mathrm{m}=3$ and 41312432 for $m=4$ are the simplest. However, the author knows of no perfect n -sequence if $\mathrm{n}>2$.

No perfect n-sequence for m exists if $m \leq n \quad$ [1]. (This is a direct corollary of Lemma 1, below.) It will be proved here that no perfect n-sequence for m exists if $m=n$, $\mathrm{m}=\mathrm{n}+1$, or $\mathrm{m}=\mathrm{n}+2$ (except for the perfect 2 -sequences for 3 and 4), extending the result slightly.

In a perfect n-sequence for m, if x is an integer and $1 \leq x \leq m$, then there are n $x^{\prime} s$ in the sequence. The positions in the sequence will be numbered, in order, starting at the left, $1,2,3, \cdots, m n$. Let " $p(x, i)$ " mean "the position of the $i^{\text {th }}$ occurrence of the integer $x^{\prime \prime}$. The first occurrence of an integer will have special significance; let $P_{x}=$ $p(x, 1)$.

Example. In the sequence $17126425374635, p(6,1)=P_{6}=5, p(4,2)=11$, $\mathrm{P}_{2}=4$, etc.

Note that $p(x, i)$ is meaningful if $1 \leq x \leq m$ and $1 \leq i \leq n$, and P_{x} is meaningful if $1 \leq x \leq m$.

In a perfect n-sequence for m

$$
\begin{equation*}
p(x, i)=P_{x}+(x+1)(i-1) \quad(1 \leq x \leq m ; 1 \leq i \leq n) \tag{1}
\end{equation*}
$$

which follows from the recursive formula (for $\mathrm{i} \geq 2$)

$$
\begin{equation*}
p(x, i)=p(x, i-1)+(x+1) \tag{2}
\end{equation*}
$$

Theorem 1. There is no perfect n-sequence for n.
Proof. Assume such a sequence exists. Then it has n^{2} entries. Also

$$
\mathrm{p}(\mathrm{n}, \mathrm{n})=\mathrm{P}_{\mathrm{n}}+(\mathrm{n}+1)(\mathrm{n}-1)=\mathrm{P}_{\mathrm{n}}+\mathrm{n}^{2}-1
$$

so that P_{n} must be 1 .
It is impossible that $1 \leq P_{n-1} \leq n$; otherwise $p\left(n-1, P_{n-1}\right)$ and $p\left(n, P_{n-1}\right)$ are meaningful and

$$
p\left(n-1, P_{n-1}\right)=P_{n-1}+n P_{n-1}-n=p\left(n, P_{n-1}\right)
$$

using (1) and $P_{n}=1$. But this is impossible since an n and an $n-1$ cannot occupy the same position.

It is impossible that $n+1 \leq P_{n-1} ;$ otherwise $p(n-1, n) \geq n^{2}+1$, but the largest position is n^{2}.

Now $1 \leq n-1 \leq n$ (since $n \geq 2$) so that P_{n-1} is a positive integer, and we have a contradiction.

Theorem 2. There is no perfect n-sequence for $n+1$, except the perfect 2 -sequence for 3.

Proof. Assume such a sequence exists. Then there are $n(n+1)=n^{2}+n$ entries. Also,

$$
\mathrm{p}(\mathrm{n}+1, \mathrm{n})=\mathrm{P}_{\mathrm{n}+1}+\mathrm{n}^{2}+\mathrm{n}-2
$$

so that either $P_{n+1}=1$ or $P_{n+1}=2$. If $P_{n+1}=2$, then $p(n+1, n)=n^{2}+n$, the last position, but since a perfect sequence taken in reverse order is still a perfect sequence, this case is symmetrical to the case $P_{n+1}=1$. Hence only the case $P_{n+1}=1$ need be considered.

It is impossible that $1 \leq P_{n} \leq n$; otherwise $p\left(n, P_{n}\right)=p\left(n+1, P_{n}\right)$. It is impossible that $n+2 \leq P_{n}$; otherwise $p(n, n) \geq n^{2}+n+1$. Therefore the only possibility is $P_{n}=$ $\mathrm{n}+1$. Now we have $\mathrm{P}_{\mathrm{n}+1}=1$ and $\mathrm{P}_{\mathrm{n}}=\mathrm{n}+1$.

It is impossible that $1 \leq P_{n-1} \leq n-1$; otherwise $p\left(n-1, P_{n-1}+1\right)=p\left(n, P_{n-1}\right)$. It is impossible that $n+1 \leq P_{n-1} \leq 2 n$; otherwise $p\left(n-1, P_{n-1}-n\right)=p\left(n, P_{n-1}-n\right)$. It is impossible that $2 n+1 \leq P_{n-1}$; otherwise $p(n-1, n) \geq n^{2}+n+1$. Therefore the only possibility is $P_{n-1}=n$.

It is impossible that $1 \leq P_{n-2} \leq n-1$; otherwise

$$
\mathrm{p}\left(\mathrm{n}-2, \mathrm{P}_{\mathrm{n}-2}+1\right)=\mathrm{p}\left(\mathrm{n}-1, \mathrm{P}_{\mathrm{n}-2}\right)
$$

It is impossible that $n \leq P_{n-2} \leq 2 n-1$; otherwise

$$
p\left(n-2, P_{n-2}-n+1\right)=p\left(n-1, P_{n-2}-n+1\right)
$$

It is impossible that $2 n \leq P_{n-2} \leq 3 n-2$; otherwise

$$
p\left(n-2, P_{n-2}-2 n+1\right)=p\left(n-1, P_{n-2}-2 n+2\right)
$$

It is impossible that $P_{n-2}=3 n-1$; otherwise $p(n-2, n)=p(n, n)$. It is impossible that $3 \mathrm{n} \leq \mathrm{P}_{\mathrm{n}-2} ;$ otherwise $\mathrm{p}(\mathrm{n}-2, \mathrm{n}) \geq \mathrm{n}^{2}+\mathrm{n}+1$. If $\mathrm{n} \neq 2$, then $1 \leq \mathrm{n}-2 \leq \mathrm{n}$ and $\mathrm{P}_{\mathrm{n}-2}$ is a positive integer, a contradiction. The only possibility is therefore $n=2$.

From these two theorems some patterns can be seen. They are formulated in the following lemmas.

Lemma 1. In a perfect n-sequence for m, if $1 \leq n-r \leq m$, then

$$
P_{n-r} \leq m n-n^{2}+n r-r+1
$$

In particular, in a perfect n-sequence for $n+i, \quad P_{n-r} \leq n r+i n-r+1$.
Proof. If $P_{n-r}>m n-n^{2}+n r-r+1$, then $p(n-r, n)>m n$, which is impossible since the largest position is mn .

Lemma 2. In a perfect n-sequence for m, if P_{x} and P_{x+1} are meaningful, then it: is impossible that

$$
\begin{equation*}
P_{x+1}+(i-1) x+(2 i-2) \leq P_{x} \leq P_{x+1}+(i-1) x+(i-2)+n \tag{3}
\end{equation*}
$$

for any integer $i \geq 1$, or that

$$
\begin{equation*}
P_{x+1}+(i-1) x+(i-1) \leq P_{x} \leq P_{x+1}+(i-1) x+(2 i-3)+n \tag{4}
\end{equation*}
$$

for any integer $\mathrm{i} \leq 1$.
Proof. Assuming (3) to hold (with $\mathrm{i} \geq 1$), we have

$$
\begin{equation*}
P_{x+1}+(i-1) x+(2 i-2) \leq P_{x} \tag{5}
\end{equation*}
$$

$$
P_{x} \leq P_{x+1}+(i-1) x+(i-2)+n
$$

It follows from (5) and (6), respectively, that

$$
\begin{equation*}
P_{x+1}+(i-1) x+(i-1) \leq P_{x} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
P_{x} \leq P_{x+1}+(i-1) x+(2 i-3)+n \tag{8}
\end{equation*}
$$

From (5) and (8) follows
(9)

$$
1 \leq P_{x}-P_{x+1}-i x+x-2 i+3 \leq n
$$

and from (7) and (6) follows

$$
\begin{equation*}
1 \leq P_{x}-P_{x+1}-i x+x-i+2 \leq n \tag{10}
\end{equation*}
$$

Fixally, we have

$$
\begin{equation*}
p\left(x, P_{x}-P_{x+1}-i x+x-2 i+3\right)=p\left(x+1, P_{x}-P_{x+1}-i x+x-i+2\right) \tag{11}
\end{equation*}
$$

which is meaningful by (9) and (10). But (11) is obviously false, hence (3) cannot hold if i \geq 1. The proof of the second half is identical.

Corollary to Lemma 2. If P_{x} and $\mathrm{P}_{\mathrm{x}+1}$ are meaningful, then either

$$
P_{x+1}+(i-1) x+(i-2)+n<P_{x}<P_{x+1}+i x+2 i
$$

for some $i \geq 1$, or

$$
P_{x+1}+(i-1) x+(2 i-3)+n<P_{x}<P_{x+1}+i x+i
$$

for some $\mathrm{i} \leq 0$.
Theorem 3. There is no perfect n-sequence for $n+2$, except the perfect 2 -sequence for 4.

Proof. This sequence has $n^{2}+2 n$ entries. By Lemma 1 , the only possibilities for P_{n+2} are (case I) $P_{n+2}=1$, (case II) $P_{n+2}=2$, and (case III) $P_{n+2}=3$.

Case I. $P_{n+2}=1$. By Lemma 1 and the Corollary to Lemma 2, the only possibilities for P_{n+1} are (case IA) $P_{n+1}=n+1$ and (case IB) $P_{n+1}=n+2$.

Case IA. $P_{n+1}=n+1$. By the lemmas, the only possibilities for P_{n} are $1, n-1$, $\mathrm{n}, \mathrm{n}+1$, and $2 \mathrm{n}+1$. But $\mathrm{P}_{\mathrm{n}}=1$ is impossible; otherwise $\mathrm{p}(\mathrm{n}, 1)=\mathrm{p}(\mathrm{n}+2,1) ; \mathrm{P}_{\mathrm{n}}=$ $\mathrm{n}+1$ is impossible; otherwise $\mathrm{p}(\mathrm{n}, 1)=\mathrm{p}(\mathrm{n}+1,1)$. Therefore there are three possibilities: (case IA1) $P_{n}=n-1$, (case IA2) $P_{n}=n$, and (case IA3) $P_{n}=2 n-1$.

Case IA1. $P_{n}=n-1$. The possibilities for P_{n-1} are $n-2,2 n-1,3 n-1$, and $3 n$. But n even is impossible; otherwise $p(n, n / 2)=p(n+2, n / 2)$; so n is odd; $P_{n-1}=$ $n-2$ is impossible; otherwise $p(n-1,(n+1) / 2)=p(n+1,(n-1) / 2) ; \quad P_{n-1}=3 n-1$ is impossible; otherwise $p(n-1, n)=p(n+1, n) ; P_{n-1}=3 n$ is impossible; otherwise

$$
\mathrm{p}(\mathrm{n}-1,(\mathrm{n}-1) / 2)=\mathrm{p}(\mathrm{n}+1,(\mathrm{n}+1) / 2) ;
$$

Therefore $P_{n-1}=2 n-1$. The possibilities for P_{n-2} are $n-1,4 n-2$, and $4 n-1$. But $P_{n-2}=n-1$ is impossible; otherwise $p(n-2,1)=p(n, 1) ; P_{n-2}=4 n-2$ is impossible; otherwise (noting that $1 \leq(n+3) / 2 \leq n$ since $n \geq 2$ and n is odd)

$$
\mathrm{p}(\mathrm{n}-2,(\mathrm{n}-1) / 2)=\mathrm{p}(\mathrm{n},(\mathrm{n}+3) / 2) ;
$$

$P_{n-2}=4 n-1$ is impossible; otherwise $p(n-2,1)=p(n-1,3)$. But $1 \leq n-2 \leq n$ (since $\mathrm{n} \geq 2$ and n odd) so that $\mathrm{P}_{\mathrm{n}-2}$ is a positive integer, which is a contradiction. Therefore case IA1 is impossible.

This first case indicates the methods used. The others are treated similarly. The other cases are:
[Continued on page 392.]

