$$
F_{2 n}^{2}+F_{2 n-1} F_{2 n+1}
$$

is also a prime number.

B-242 Proposed by J. Wlodarski, Proz-Westhoven, Federal Republic of Germany.
Prove that

$$
\binom{n}{k} \div\binom{ n}{k-1}=F_{m} \div F_{m+1}
$$

for infinitely many values of the integers m, n, and k (with $0 \leq k<n$).

B-243 Proposed by J. Wlodarski, Proz-Westhoven, Federal Republic of Germany.

Prove that

$$
\binom{n}{k} \div\binom{ n+1}{k}=F_{m} \div F_{m+1}
$$

for infinitely many values of the integers m, n, and k (with $0 \leq k \leq n$).

ERATTA FOR

A CHARACTERIZATON OF THE FIBONACCI NUMBERS SUGGESTED BY A PROBLEM ARISING IN CANCER RESEARCH

Please make the following changes in "A Characterization of the Fibonacci Numbers Suggested by a Problem Arising in Cancer Research" by Leslie E. Blumenson, appearing on pp. 262-264, Fibonacci Quarterly, April 1972.

Page 263, line 11: For " $N^{2}=2$," read " $N=2 "$;
Page 264, fourth line from bottom of page: For "+" read "•";
Page 264, Eq. (6): For "+" read ".";
Page 292, Eq. (7): For "+" read "•" •

