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Since the year 1202 when Leonardo Pisano originated the Fibonacci sequence, many in-
teresting resul ts have been obtained [4] a The sequence is usually defined 

F 0 = 0 Fi = 1 F = F , + F 0 for n ^ 2 . u 1 n n-1 n-2 

and it is a well-known fact that 

C 0" - fr i) 
In this paper we generalize the usual definition of the Fibonacci numbers and the matr ix r e -
lation., and exhibit some of the many relationships which hold for elements of the generalized 
sequence, 

Consider the following definitions for a generalized sequence. 
Definition 1. The k order Fibonacci sequence is a sequence which satisfies the fol-

lowing conditions: 
ae Fn = Fi = • - • = F, . = 0 and F . = 0 for all i 2= 1 u -1 k-1 - l 
b. F k _ x = 1 

k 
c, F = ) F . for n > k 

n / J n - i 
i=l 

If we relax the condition as specified in par t a of Definition 1, we obtain the following-
Definition 2. A sequence whose members (denoted ¥ . ) satisfy the following two con-
— ^ i 

ditions will be called a generalized k order Fibonacci sequence 
a. F*. = a. for 0 < i ^ k - 1 where a. is an arbi t rary number, 

l i i 

•? = " y ^ F ... . 
n Z^J n-1 

b. F n 
i=l 

We now define a sequence called the r auxiliary sequence of order k as a special case of 
the generalized k order sequence* 
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Definition 3. A sequence which satisfies the following three conditions will be called an 
r auxiliary sequence of order k, where 1 ^ r ^ k - 2. 

a. A r = 0 for 0 < i < k - 2, i ^ r - 1 

b. A r = A.r , = 1 
r - 1 k-1 

c Ar = y v . 
n / J n-i 

for n ^ k . 
i i -1 

i=l 

In the following, the superscript of F. will be left off if it is c lear from the context 
that we a re concerned with the k order sequence. 

Property 1. F k = F ^ for 1 ^ j < 2(k - 1) k > 2 

Property 2. F ^ = ^ ( k - l ) + X f ° r ^ k > X 

Property 3. F ^ k = 2 k - 1 for all k ^ 2. 
r th 

Theorem 1. If A is an element in the r auxiliary sequence of order k, and if 
F. is an element of the corresponding k order Fibonacci sequence, then 

A r = F + F - + • • • + F ,i + F for n ^ k. 
n n n-1 n-r+1 n - r 

Proof. Let n = k, then we will show that 

(1) Al = F. + F. , + . . . + F. k k k«l k - r 

By Definition 1, 

(2) 2Xi 2 , 
JCV—X 

i=0 

and by Definition 2, 

k 
(3) \r - S X J 

3=1 

But since r is defined in the range 0 ^ r ^ k - 2 then there is an element A. . in (3) such 
that k - i = r - 1 . From the definition of A. we know J i 

r - 1 k-1 

and all the remaining elements are zero. Therefore 
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k 

yA
r. = 2 

3=1 
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and from (2) we have the desired result for n = k* 
Suppose that for k =s n ^ m the theorem is t rues then for n = m + l , we will also 

show the theorem is t rue. 

(4) A r .„ - > A r 

ni+1 ZmJ m+l- j m m-1 
3=1 

A r + A r „ + . . . + A1* ^ . m+l-k 

By hypothesis we can rewrite each element of (4) as follows: 

A = F + F 1 + - . . + F m m m - 1 m - r 
A r

1 = F - + F 0 + . . . + F -
m-1 m-1 m-2 m - r - 1 

A = F + F + • • • + F 
m+l-k r m+l-k m-k m + l - k - r 

and adding the columns we obtain 

Zmmd m - i + 1 ZmJ 

i=l 3=1 
m-j+1 

k k 
V F . + ••• + \ ^ F 
j=l 3=1 

r+1 

= F _,- + F + . . . + F ,-
m+1 m m-r+1 

A m+1 

which is the desired result . 
Lemma 1, The following three identities hold for elements of the auxiliary sequences 

for m 2: k and 1 < r ^ k - 2. 

A, 

B. 

Co 

A
r _ A

r - \ = F m m - 1 m 
A r - A ' " 1 = F 

m m m - r 
A r - A r , = - F i + F 

m m - 1 m - r - 1 m 

Theorem 2. If Q is the k X k matrix 

0 

0 

0 

0 
1 

1 

0 

0 

0 
1 

0 

1 

0 

0 
1 

0 •• 

0 --
1 . , 

0 •• 
1 e e 

• 0 

• 0 

- 0 

• 0 
. 1 

0 

0 

0 

0 
1 

0 

0 

0 

1 
1 
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then 
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Qn = 

n - 1 

"n+1 

A1 -n-1 
A1 

n 
A U 

F A1 

n+k-4 n+k-4 
F A1 

n+k-3 n+k-3 
F A1 

n+k-2 n+k-2 

n-1 

n 

n+k-4 
\r 
n+k-3 

n+k-2 

.k-2 
n-1 

^k-2 
n 

,k-2 
n+1 

n+1 

"n+2 

A k " 2 F 
n+k-4 r n+k-3 

Ak~2 F 
n+k-3 *n+k-2 

A k " 2 F 
n+k-2 n+k-1 

where n is a positive integer, and the F f s a re elements of the k order sequence and 
r th 

the A - a re the corresponding te rms of the r auxiliary sequence of that same order . 
Proof. This theorem can be proved by induction on n. With n = 2, Q2 is 

Q2 * 

0 0 1 0 

0 0 0 1 

0 0 0 0 

1 1 1 1 

1 2 2 2 

0 

0 

0 

1 

2 

0 

0 

1 

1 

2 

= 

A* 

F A1 
*k-2 k-2 
F A1 

* k - l A k - 1 
F, A} 

4"2 ', 
k-2 

A k - 2 
A k-2 A k - 1 
Ak-2 

k 

k - 1 

"k+1 

Supposing the theorem is true for 1 ^ n ^ m we can show it is true for n = m + 1. 

Q m + 1 = Q . Q m . 

m But examining the effect of multiplying Q with Q , it is obvious that the first k - 1 rows 
of Q cause row i (2 ^ i ^ k) to become row i - 1 of Q • The k row of Q is 

m 
obtained by summing the columns of Q , which using definitions 1 and 3 produces the de-
sired result . 

Theorem 3. If n = k, then 

2L$Fi Fn+k+l k - 1 +2l*<rlFn+i 
i= l i= l 

2>.--rfr*Z ;i - DF n+i 
i= l i* l 
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Proof. The sum of the f irs t n t e rms of the k order sequence will appear as an 
element in a matrix which represents the sum 

(1) 

i* l 

Qx 

in either the (l9k) or the (2,1) position* We rewrite (1) to obtain 

(2) ^ Q 1 = (Q - I.) ^ ( Q 1 1 - I) 
i = l 

where I is the (kX k) identity matrix. The inverse of Q - I shown in (2) can be shown to 
be 

(3) k - 1 

-(k - 2) -(k - 3) 
1 -(k - 3) 
1 2 

-(k - k) -(k - (k + 1)) 
-(k - k) -(k - (k + 1)) 
-(k - k) -(k - (k + 1)) 

-(k - k) -(k - (k + 1)) 
k - 1 -(k - (k + 1)) 

^n+1 If we multiply the f irst row of (3) against the last column of Q - Q we obtain the element 
in the ( l ,k) position which represents the desired sum 

2>. • 
i= l 

Z*> 
i = l i = l 

k - 1 

(4) 

r r Z - ( k - i - 1 ) ( F n + i - F i ) 

=1 

k 

i=l 

k k 

r r E 1 F n + i - l T T T E 1 F i 
i=l 

F„*rt + 2 + E "n+1 k 
i=l i=l 

n+k+1 i F n + i 
i= l 
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which is the desired result . The second form can be obtained by substituting in (4) the sum 

k 

JLmJ n+i 
i=l 

for F . - , and combining the two sums. 
Using the method given in the proof of Theorem 3, it is obvious that an expression sim-

i lar to that given in this theorem, can be given for the sum 

y j F . + . - for 1 < j - 1 < k and n > k 
i=l 

which is 

Z - / i+j-l k - l / j n+i k - 1 Z - f n+i 
i=l i=l i=j 

Theorem 4. If 0 < j < k - 1 and if n ^ k then 

n k k 

zLf Fki+j = ~ " T 2Lr * F nk+k- l " ^ F nk+ i - l " k - 1 
i=l i=l i=j+l 

Proof. Consider the sum 

n 

(1) ] T Qki 

i=l 

We can obtain the desired sum 

n 

2^ Fki+j 
i=l 

in the (k, j) position of the matrix representing the sum given in (1). 

n 
J ] Q

k i = Q k [ l + Q k
 + . . . +Q( n-1 ) k] 

(2) i=l 

= (Qk - I ) _ 1 Q k ( Q n k - 1) 
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The characterist ic equation of Q is 

. k k-1 k-2 
X - X - X X - 1 
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k-1 and since Q always has a factor Q - I5 we can write 

Q k _ 1 = (Q - I ) (Q k _ 1 + Q k " 2 + . . . + Q + I) 

However 

therefore 

and thus 

Q
k " l + Q k - 2 + e e m + Q + j = Q k 

Q k - 1 = Qk(Q - I) 

(3) (Qk - I )" 1 Q k (Q n k - I) = (Q - I)~1(Qn k - I) 

and upon multiplying the last column of Q - I with the j row of (Q - I)~ we obtain the 
desired result . 

Theorem 5. 

k-2 

F , = F - F + F F ,, m+n m - 1 n m n+k - l + Z A m - l n+i s 

i=l 

where m and n are nonnegative integers. 
Note. If k = 2 then F = F - F + F , -F which is a well-known result of the m+n m - 1 n n+1 m 

usual Fibonacci sequences 
Proof. F occurs in the matrix Q in the (2,1) or (l sk) positions. Since 

the required multiplication can be performed to yield the desired result . 
Theorem 6. If B is the matr ix 

A r 
'o 

Fi 
Aj 
A ! 

.k-2 
^0 

... Af 
Fi 

A^"2 F2 
,k-2 F3 

F A1 
*k-2 A k - 2 
F A1 
* k-1 ^ k - 1 

• K-2 •• 
• ALi •• 

Ak-2 
. Ak-2 

k-2 

F k - 1 
F k 
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r th 

where the A. , (1 ^ r ^ k - 2) a re the elements of the r auxiliary sequence of order k9 
and if Q~ is the matr ix 

"n-1 

" n-fk-3 

"n+k-2 

n-1 

Ar 
n 

n+k-

An+k-

.. 

•• 

-3 " 

-2 

• F n 

• \ + i 

n+k-2 

Fn+k-l_ 

then Q ~ B = Q~ where Q is the matr ix defined in Theorem 2. 
Proof. The proof is again done by induction upon n and is s imilar to that given in 

Theorem 2. 
Using the resul ts of Theorem 6 for the generalized Fibonacci sequence, it is possible 

to obtain theorems for this sequence corresponding to Theorems 3, 4, 5. These correspond-
ing theorems are stated here without proof. 

Theorem 7. 
n k 

E*. "Fn+k+l + F k + i + k ^ r Z i ( F
J 

,- - F . ) for n ^ k. n+1 l 
i=l i=l 

Theorem 8. If 1 < j < k - 1, and if n >: k, then 

k 

IX+] = F ^ X ^ n k + i " Fi) + E (Fnk+i " Fi> 
i = l i = l i=J 

and with j = 0, the expression becomes 

Z«J ki 
i = l 

k-1 

E 
i=l 

i (F . _,. - F . ) - (k - 2) (F, _,,,. - F. ) nk+i I (n+l)k k 

Theorem 9. 
k-2 

F = F F + F F + 
m+n m-1 n m n+k+1 

/ „/ m-1 
i = l 

F ,. for m , n ^ 1 n+i 

nd There are many known relations involving the elements of the usual or 2 order F ib -
onacci sequence. A partial l is t of these relations appear in [4] . However, when general-
izing many of these relations to the te rms of either the k order or the generalized k 
order sequence, the relations become quite involved; but in each case a corresponding for-
mula holds in the more general situation. 
[Continued on page 354. ] 


