1. G. P. Mostow, J. H. Sampson, and J. P. Mryer, Fundamental Structures of Algebra, McGraw-Hill, New York, 1963.
2. D. C. Murdoch, Linear Algebra for Undergraduates, John Wiley and Sons, New York, 1957.
3. Sam Perlis, Theory of Matrices, Addison-Wesley, Reading, Mass., 1952.
4. S. L. Basin and V. E. Hoggatt, Jr. , "A Primer on the Fibonacci Sequence - Parts 1 and 2," Fibonacci Quarterly, Vol. 1, No. 1, 1963, pp. 65-67. Vol. 1, No. 2, 1963, pp. 61-68.
[Continued from page 348.]
If $\mathrm{a} \equiv 0, \mathrm{~b} \not \equiv 0(\bmod \mathrm{p})$, then every term of the primary sequence from the second one on will be $\equiv 0(\bmod p)$ and this sequence will satisfy the theorem since

$$
J_{p-(k / p)} \equiv J_{p} \equiv 0(\bmod p)
$$

If $\mathrm{a} \equiv 0, \mathrm{~b} \not \equiv 0(\bmod p)$, then we will get the sequence $\left(1,0, b, 0, b^{2}, 0, b^{3}, 0, \cdots\right)$ and every second term will be divisible by p. Thus, whether $p-(k / p)=p+1$ or $p-1$, the theorem will be satisfied.

I will close the paper by investigating which terms of primary sequence are divisible by the prime 2. If a, b are both odd, we obtain the repetitive sequence $(1,1,0, \cdots)$, and $J_{3}=J_{2+1} \equiv 0(\bmod 2)$.

If a is odd and b is even, then $\left\{J_{n}\right\}$ is a Fibonacci-like group ($\bmod 2$) and we get the sequence $(1,1,1, \cdots)$.

If a is even and b odd, we get the sequence $(1,0,1,0,1,0, \cdots)$ and $J_{2}=J_{2+0} \equiv 0$ $(\bmod 2)$.

If a, b are both even, we obtain the sequence $(1,0,0,0, \cdots)$ and $J_{2} \equiv 0(\bmod 2)$.
Note. The Fibonacci group was pointed out to me by Stan Perlo, currently a graduate student at the University of Michigan.

REFERENCES

1. John H. Halton, "On the Divisibility Properties of Fibonacci Numbers," Fibonacci Quarterly, Vol. 4, No. 3, Oct. 1966.
2. D. W. Robinson, "The Fibonacci Matrix Modulo m," Fibonacci Quarterly, Vol. 1, No. 2, Apr. 1963, pp. 29-37.
3. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, $4^{\text {th }}$ Ed., Clarendon Press, Oxford, 1960, pp. 148-150, 221-223.
4. Robert P. Backstrom, "On the Determination of the Zeros of the Fibonacci Sequence," Fibonacci Quarterly, Vol. 4, No. 4, Dec. 1966.
5. Burton W. Jones, The Theory of Numbers, Holt, Reinhart and Winston, New York, 1964, pp. 76-84.

