THE COEFFICIENTS OF $\cosh x / \cos x$

J. M. GANDHI and V. S. TANEJA

Department of Mathematics, Western Illinois University, Macomb, Illinois

1. Gandhi [3] defined a set of rational integral coefficients $S_{2 n}$ by the generating function
(1)

$$
\frac{\cosh x}{\cos x}=\sum_{n=0}^{\infty} \frac{S_{2 n^{2}} x^{2 n}}{(2 n)!}
$$

The coefficients $S_{2 n}$ were the subject of much investigation by Carlitz [1], [2], Gandhi [4], [5], Gandhi and Ajaib Singh [6], Krick [7], Raab [8] and Salie [9]. In the present note we prove that

$$
\begin{equation*}
S_{4 n+2} \equiv 52 \quad(\bmod 100) \quad \text { for } \quad n>0 \tag{2}
\end{equation*}
$$

The proof of (2) involves some elementary but interesting results.
2. Gandhi and Ajaib Singh [6] proved that

$$
\begin{equation*}
\mathrm{S}_{4 \mathrm{n}+2}=\sum_{\mathrm{r}=1}^{\mathrm{n}}\binom{4 \mathrm{n}+2}{4 \mathrm{r}}(-1)^{\mathrm{r}+1} 2^{2 \mathrm{r}} \mathrm{~S}_{4 \mathrm{n}+2-4 \mathrm{r}}+2^{4 \mathrm{n}+1} . \tag{3}
\end{equation*}
$$

Assume that (2) is true for any $\mathrm{n}>0$ and we shall prove that it is true for $\mathrm{n}+5$. Since S_{6}, $\mathrm{S}_{10}, \cdots, \mathrm{~S}_{4 \mathrm{n}-2} \equiv 52(\bmod 100)$, and $\mathrm{S}_{2}=2$, Eq. (3) yields

$$
\begin{aligned}
\mathrm{S}_{4 \mathrm{n}+2} & \equiv 52 \sum_{\mathrm{r}=1}^{\mathrm{n}-1}\binom{4 \mathrm{n}+2}{4 \mathrm{r}}(-1)^{\mathrm{r}+1} 2^{2 \mathrm{r}}+\binom{4 \mathrm{n}+2}{4 \mathrm{n}}(-1)^{\mathrm{n}+1} 2^{2 \mathrm{n}+1}+2^{4 \mathrm{n}+1} \quad(\bmod 100) \\
& \equiv 52 \sum_{\mathrm{r}=1}^{\mathrm{n}}\binom{4 \mathrm{n}+2}{4 \mathrm{r}}(-1)^{\mathrm{r}+1} 2^{2 \mathrm{r}}+\binom{4 \mathrm{n}+2}{4 \mathrm{n}}(-1)^{\mathrm{n}+1} 2^{2 \mathrm{n}}[2-52]+2^{4 \mathrm{n}+1}(\bmod 100) .
\end{aligned}
$$

Since $n>0$, the second term on the right is divisible by 100 and therefore

$$
\begin{align*}
\mathrm{S}_{4 \mathrm{n}+2} & \equiv 52 \sum_{\mathrm{r}=1}^{\mathrm{n}}\binom{4 \mathrm{n}+2}{4 \mathrm{r}}(-1)^{\mathrm{r}+1} 2^{2 \mathrm{r}}+2^{4 \mathrm{n}+1} \\
& \equiv 104 \sum_{\mathrm{r}=1}^{\mathrm{n}}\binom{4 \mathrm{n}+2}{4 \mathrm{r}}(-1)^{\mathrm{r}+1} 2^{2 \mathrm{r}-1}+2^{4 \mathrm{n}+1} \tag{4}\\
& \equiv 2 \sum_{\mathrm{r}=1}^{\mathrm{n}}\binom{4 \mathrm{n}+2}{4 \mathrm{r}}(-1)^{\mathrm{r}+1} 2^{2 \mathrm{r}}+2^{4 \mathrm{n}+1}(\bmod 100) \\
& \equiv 2 \mathrm{~A}+2^{4 \mathrm{n}+1}(\bmod 100)
\end{align*}
$$

where

$$
A=\sum_{r=1}^{n}\binom{4 n+2}{4 r}(-1)^{r+1} 2^{2 r}
$$

We now evaluate the sum for A. Let $\omega=(1+i) / \sqrt{2}$, then it can be verified that $\omega^{4}=-1$ and $\omega^{8}=+1$, where $i=\sqrt{-1}$. Now

$$
(1+\omega x)^{4 n+2}=\sum_{r=0}^{4 n+2}\binom{4 n+2}{r} \omega{ }^{r} x^{r}
$$

and

$$
(1-\omega x)^{4 n+2}=\sum_{r=0}^{4 n+2}\binom{4 n+2}{r}(-1)^{r} \omega^{r} x^{r}
$$

Adding these two expansions we get

$$
\begin{equation*}
\frac{(1+\omega x)^{4 n+2}+(1-\omega x)^{4 n+2}}{2}=\sum_{r=0}^{2 n+1}\binom{4 n+2}{2 r} \omega^{2 r} x^{2 r} \tag{5}
\end{equation*}
$$

In (5) replace x by $\sqrt{-1 x}$ to get

$$
\begin{equation*}
\frac{(1+\sqrt{-1} \omega x)^{4 n+2}+(1-\sqrt{-1} \omega x)^{4 n+2}}{2}=\sum_{r=0}^{2 n+1}\binom{4 n+2}{2 r}(-1)^{r} \omega^{2 r} x^{2 r} \tag{6}
\end{equation*}
$$

Adding (5) and (6) and letting $\mathrm{x}=\sqrt{2}$ it is easy to see that
(7) $\quad \mathrm{A}=1-\frac{1}{4}\left[(1+\omega \sqrt{2})^{4 \mathrm{n}+2}+(1-\omega \sqrt{2})^{4 \mathrm{n}+2}+(1+\sqrt{-1} \omega \sqrt{2})^{4 \mathrm{n}+2}\right.$

$$
\left.+(1-\sqrt{-1} \omega \sqrt{2})^{4 \mathrm{n}+2}\right]
$$

Since $\omega \sqrt{2}=1+\mathrm{i}$, Eq. (7) becomes
$A=1-\frac{1}{4}\left[(2+i)^{4 n+2}+(-1)^{4 n+2}+(i)^{4 n+2}+(2-i)^{4 n+2}\right]=1-\frac{1}{4}\left[(3+4 i)^{2 n+1}+(3-4 i)^{2 n+1}-2\right]$.

Using this expression for A, Eq. (4) becomes

$$
\begin{equation*}
\mathrm{S}_{4 \mathrm{n}+2} \equiv 3-\frac{1}{2}\left[(3+4 \mathrm{i})^{2 \mathrm{n}+1}+(3-4 \mathrm{i})^{2 \mathrm{n}+1}\right]+2^{4 \mathrm{n}+1} \quad(\bmod 100) \tag{8}
\end{equation*}
$$

Lemma 1. If α and β are integers, $\alpha \not \equiv 0(\bmod 5)$ and if $\alpha^{\mathrm{K}} \equiv \beta(\bmod 100)$, then $\alpha^{\mathrm{K}+20} \equiv \beta(\bmod 100)$. However, if $\alpha=2$, then K must be greater than 1 .

Proof. Trivial.
In view of Lemma 1 , for $n>0$, we have
(9)

$$
2^{4 \mathrm{n}+1} \equiv 2^{4(\mathrm{n}+5)+1} \quad(\bmod 100)
$$

Then we prove that
(10) $\frac{1}{2}\left\{(3+4 \mathrm{i})^{2 \mathrm{n}+1}+(3-4 \mathrm{i})^{2 \mathrm{n}+1}\right\} \equiv \frac{1}{2}\left\{(3+4 \mathrm{i})^{2 \mathrm{n}+11}+(3-4 \mathrm{i})^{2 \mathrm{n}+11}\right\} \quad(\bmod 100)$.

It is easy to see that the above congruence holds for modulus 4 hence we need to prove that

$$
(3+4 i)^{2 n+1}+(3-4 i)^{2 n+1} \equiv(3+4 i)^{2 n+11}+(3-4 i)^{2 n+11}(\bmod 25)
$$

or
(11)

$$
(3+4 i)^{2 n+1}\left\{(3+4 i)^{10}-1\right\}+(3-4 i)^{2 n+1}\left\{(3-4 i)^{10}-1\right\} \equiv 0 \quad(\bmod 25)
$$

By actual expansion we find that
(12)

$$
(3+4 i)^{10}-1 \equiv 4(3-4 \mathrm{i}) \quad(\bmod 25)
$$

and

$$
(3-4 i)^{10}-1 \equiv 4(3+4 i) \quad(\bmod 25)
$$

Let
(13) $\quad(3+4 \mathrm{i})^{2 \mathrm{n}+1}=\mathrm{c}+\mathrm{id}, \quad(3-4 \mathrm{i})^{2 \mathrm{n}+1}=\mathrm{c}-\mathrm{id}$.

Expanding we find that

$$
c=\sum_{r=0}^{n}\binom{2 n+1}{2 r} 3^{2 n+1-2 r}(-1)^{r}
$$

and

$$
\mathrm{d}=\sum_{\mathrm{r}=0}^{\mathrm{n}}\binom{2 \mathrm{n}+1}{2 \mathrm{r}+1} 3^{2 \mathrm{n}+1-(2 \mathrm{r}+1)}(-1)^{\mathrm{r}}
$$

Lemma 2. $c \neq 0(\bmod 5)$ and $d \not \equiv 0(\bmod 5)$. Proof.

$$
\begin{aligned}
\mathrm{c} & \equiv \sum_{\mathrm{r}=0}^{\mathrm{n}}\binom{2 \mathrm{n}+1}{2 \mathrm{r}+1}(-2)^{2 \mathrm{n}+1-2 \mathrm{r}_{(-1)^{\mathrm{r}}} \quad(\bmod 5)} \\
& \equiv-\sum_{\mathrm{r}=0}^{\mathrm{n}}\binom{2 \mathrm{n}+1}{2 \mathrm{r}} 2^{2 \mathrm{n}+1-2 \mathrm{r}}(-1)^{\mathrm{r}} \quad(\bmod 5) \\
& \equiv-\frac{(1-2 \mathrm{i})^{2 \mathrm{n}+1}+(1+2 \mathrm{i})^{2 \mathrm{n}+1}}{2 \mathrm{i}} \quad(\bmod 5) .
\end{aligned}
$$

If $\mathrm{c} \equiv 0(\bmod 5)$ then since $5=(1+2 \mathrm{i})(1-2 \mathrm{i})$ and hence $\mathrm{c} \equiv 0(\bmod 1+2 \mathrm{i})$, which is not true and hence $c \not \equiv 0(\bmod 5)$. Similarly it can be proved that $d \not \equiv 0(\bmod 5)$. Moreover from (13) we have

$$
\begin{equation*}
\mathrm{c}^{2}+\mathrm{d}^{2}=(25)^{2 \mathrm{n}+1} \equiv 0(\bmod 25) \tag{14}
\end{equation*}
$$

Since $c \neq 0, d \neq 0(\bmod 5)$ it is easy to see that $(c, d)=1$ and hence there exist a number a such that
$\mathrm{c} \equiv \mathrm{ad}(\bmod 25)$.

Using (11) and (12), Eq. (10) simplifies to

$$
\begin{equation*}
3 \mathrm{c}+4 \mathrm{~d} \equiv 0 \quad(\bmod 25) \tag{16}
\end{equation*}
$$

Therefore to prove (10), we need to prove (16). Substitute (15) into (14) to get $1+\mathrm{a}^{2} \equiv 0$ $(\bmod 25)$ which yields that either $(\mathrm{a}) \mathrm{a} \equiv 7(\bmod 25)$ or $(\mathrm{b}) \mathrm{a} \equiv 18(\bmod 25)$. We then prove that condition (a) can only be satisfied and thus will reject condition (b). Assume that (b) is satisfied, i.e., $c \equiv 18 \mathrm{~d}(\bmod 25)$ or

$$
\begin{equation*}
\mathrm{c} \equiv 3 \mathrm{~d} \quad(\bmod 5) . \tag{17}
\end{equation*}
$$

We show that (17) is impossible. We have proved that

$$
c \equiv-\frac{(1-2 i)^{2 n+1}+(1+2 i)^{2 n+1}}{2 \mathrm{i}} \quad(\bmod 5)
$$

Similarly it can be proved that

$$
\mathrm{D} \equiv \frac{(1+2 \mathrm{i})^{2 \mathrm{n}+1}+(1-2 \mathrm{i})^{2 \mathrm{n}+1}}{2} \quad(\bmod 5)
$$

Substituting these expressions in (17) it can be easily proved that (17) will not even hold for modulus ($1+2 \mathrm{i}$) or ($1-2 \mathrm{i}$). Hence (17) is impossible and condition (b) cannot be satisfied. Therefore condition (a) has to be satisfied and hence $c \equiv 7 d$ ($\bmod 25$). Using this congruence we find that (16) is satisfied and hence we have proved the truth of (10). Using these results and (9), from (8) we get $S_{4 n+2} \equiv S_{4 n+22}(\bmod 100)$. But $S_{4 n+2} \equiv 52(\bmod 100)$ and therefore $\mathrm{S}_{4 \mathrm{n}+22} \equiv 52(\bmod 100)$ and hence if (2) is true for $\mathrm{n}>0$ it is also true for $\mathrm{n}+5$. From Krick's [7] table for $\mathrm{S}_{2 \mathrm{n}}$ up to S_{20} we find that (2) is true for $\mathrm{n}=1,2,3$, 4. Also using (3) we verify that $\mathrm{S}_{22} \equiv 52(\bmod 100)$. Thus by the usual method of induction (2) has been established.

ACKNOWLEDGEMENTS

The authors wish to thank Professor L. Carlitz, whose helpful comments were instrumental in removing some errors in our results.

REFERENCES

1. L. Carlitz, "The Goefficients of $\cosh x / \cos x, "$ Math. Mag., Vol. 32 (1959), pp. 132, 136.
2. L. Carlitz, "The Coefficients of $\cosh x / \cos x, "$ Monatshefte für Mathematik, Vol. 69 (1965), pp. 129-135.
3. J. M. Gandhi, "The Coefficients of $\cosh x / \cos x$, etc. ," Math. Mag., Vol. 31 (1958), pp. 185-191.
4. J. M. Gandhi, "The Coefficients of $x(\sinh x / \cos x)$, Bull. of Canadian Math. Soc., Vol. 13 (1970), pp. 305-310.
5. J. M. Gandhi, "Sixth Interval Formula for the Coefficients of $\cosh x / \cos x$, " Communicated for Publication.
6. J. M. Gandhi and Ajaib Singh, "Fourth Interval Formulae for the Coefficients of cosh x/ cos x," Monatshefte für Mathematik, Vol. 70 (1966), pp. 327-329.
7. M. S. Krick, "The Coefficients of $\cosh x / \cos x, "$ Math. Mag., Vol. 34 (1960), pp. 37-40.
8. Werner Raab, "Teilbarkeitseigenschaften verallgemeinerter Tangential-koeffizienten," Crell's Journal, Vol. 241 (1970), pp. 7-14.
9. H. Salie, "Arithmetische Eigenchaften der Koeffizienten einer Speziellen Hurwitzschen Potenzreihe," Wissenchaftliche Zeitacheift der Karl-Mark-Universitat Leipzig - 12. Jahrgang 1973, Math. Naturwiss. Reihe, Heft 3, pp. 617-618.

