THE COEFFICIENTS OF cosh x/cos x

J. M. GANDHI and V. S. TANEJA Department of Mathematics, Western Illinois University, Macomb, Illinois

1. Gandhi [3] defined a set of rational integral coefficients $~\rm S_{2n}^{}$ by the generating function

(1)
$$\frac{\cosh x}{\cos x} = \sum_{n=0}^{\infty} \frac{S_{2n} x^{2n}}{(2n)!} .$$

The coefficients S_{2n} were the subject of much investigation by Carlitz [1], [2], Gandhi [4], [5], Gandhi and Ajaib Singh [6], Krick [7], Raab [8] and Salie [9]. In the present note we prove that

(2)
$$S_{4n+2} \equiv 52 \pmod{100}$$
 for $n \ge 0$.

The proof of (2) involves some elementary but interesting results.

2. Gandhi and Ajaib Singh [6] proved that

(3)
$$S_{4n+2} = \sum_{r=1}^{n} {\binom{4n+2}{4r}} (-1)^{r+1} 2^{2r} S_{4n+2-4r} + 2^{4n+1}$$

Assume that (2) is true for any $n \ge 0$ and we shall prove that it is true for n + 5. Since S_6 , S_{10} , \cdots , $S_{4n-2} \equiv 52 \pmod{100}$, and $S_2 = 2$, Eq. (3) yields

•

$$S_{4n+2} = 52 \sum_{r=1}^{n-1} {\binom{4n+2}{4r}} (-1)^{r+1} 2^{2r} + {\binom{4n+2}{4n}} (-1)^{n+1} 2^{2n+1} + 2^{4n+1} \pmod{100}$$
$$= 52 \sum_{r=1}^{n} {\binom{4n+2}{4r}} (-1)^{r+1} 2^{2r} + {\binom{4n+2}{4n}} (-1)^{n+1} 2^{2n} [2-52] + 2^{4n+1} \pmod{100}.$$

Since $n \ge 0$, the second term on the right is divisible by 100 and therefore

$$S_{4n+2} = 52 \sum_{r=1}^{n} {\binom{4n+2}{4r}} (-1)^{r+1} 2^{2r} + 2^{4n+1}$$
$$= 104 \sum_{r=1}^{n} {\binom{4n+2}{4r}} (-1)^{r+1} 2^{2r-1} + 2^{4n+1}$$
$$= 2 \sum_{r=1}^{n} {\binom{4n+2}{4r}} (-1)^{r+1} 2^{2r} + 2^{4n+1} \pmod{1}$$

(4)

$$\equiv 2 \sum_{r=1}^{n} {\binom{4n+2}{4r}} (-1)^{r+1} 2^{2r} + 2^{4n+1} \pmod{100}$$
$$\equiv 2A + 2^{4n+1} \pmod{100}$$

where

$$A = \sum_{r=1}^{n} {\binom{4n+2}{4r}} (-1)^{r+1} 2^{2r}$$

We now evaluate the sum for A. Let $\omega = (1 + i)/\sqrt{2}$, then it can be verified that $\omega^4 = -1$ and $\omega^8 = +1$, where $i = \sqrt{-1}$. Now

$$(1 + \omega x)^{4n+2} = \sum_{r=0}^{4n+2} {4n + 2 \choose r} \omega^r x^r$$
,

and

.

$$(1 - \omega x)^{4n+2} = \sum_{r=0}^{4n+2} {4n+2 \choose r} (-1)^r \omega^r x^r$$

Adding these two expansions we get

(5)
$$\frac{(1+\omega x)^{4n+2}+(1-\omega x)^{4n+2}}{2} = \sum_{r=0}^{2n+1} {\binom{4n+2}{2r}} \omega^{2r} x^{2r} .$$

In (5) replace x by $\sqrt{-1}x$ to get

(6)
$$\frac{(1 + \sqrt{-1}\omega x)^{4n+2} + (1 - \sqrt{-1}\omega x)^{4n+2}}{2} = \sum_{r=0}^{2n+1} {\binom{4n}{2r}} (-1)^r \omega^{2r} x^{2r}.$$

Adding (5) and (6) and letting $x = \sqrt{2}$ it is easy to see that

[Oct.

,

1972] THE COEFFICIENTS OF COSH X/COS X
(7) A = 1 -
$$\frac{1}{4} \left[(1 + \omega \sqrt{2})^{4n+2} + (1 - \omega \sqrt{2})^{4n+2} + (1 + \sqrt{-1}\omega \sqrt{2})^{4n+2} + (1 - \sqrt{-1}\omega \sqrt{2})^{4n+2} \right]$$
.

Since $\omega \sqrt{2} = 1 + i$, Eq. (7) becomes

$$A = 1 - \frac{1}{4} \left[(2 + i)^{4n+2} + (-1)^{4n+2} + (i)^{4n+2} + (2 - i)^{4n+2} \right] = 1 - \frac{1}{4} \left[(3 + 4i)^{2n+1} + (3 - 4i)^{2n+1} - 2 \right].$$

Using this expression for A, Eq. (4) becomes

(8)
$$S_{4n+2} \equiv 3 - \frac{1}{2} [(3 + 4i)^{2n+1} + (3 - 4i)^{2n+1}] + 2^{4n+1} \pmod{100}$$
.

 $\alpha^{K+20} = \beta \pmod{100}.$ However, if $\alpha = 2$, then K must be greater than 1.

Proof. Trivial.

In view of Lemma 1, for n > 0, we have

(9)
$$2^{4n+1} \equiv 2^{4(n+5)+1} \pmod{100}$$
.

Then we prove that

$$(10) \quad \frac{1}{2} \left\{ (3 + 4i)^{2n+1} + (3 - 4i)^{2n+1} \right\} \equiv \frac{1}{2} \left\{ (3 + 4i)^{2n+11} + (3 - 4i)^{2n+11} \right\} \pmod{100}.$$

It is easy to see that the above congruence holds for modulus 4 hence we need to prove that

$$(3 + 4i)^{2n+1} + (3 - 4i)^{2n+1} \equiv (3 + 4i)^{2n+11} + (3 - 4i)^{2n+11} \pmod{25}$$
,

or
(11)
$$(3 + 4i)^{2n+1} \{(3 + 4i)^{10} - 1\} + (3 - 4i)^{2n+1} \{(3 - 4i)^{10} - 1\} \equiv 0 \pmod{25}$$
.

By actual expansion we find that

(12)
$$(3 + 4i)^{10} - 1 \equiv 4(3 - 4i) \pmod{25}$$

and

$$(3 - 4i)^{10} - 1 \equiv 4(3 + 4i) \pmod{25}$$
.

$$(3 - 4i)^{10} - 1 \equiv 4(3 + 4i) \pmod{25}$$

(13)
$$(3 + 4i)^{2n+1} = c + id, (3 - 4i)^{2n+1} = c - id.$$

Expanding we find that

$$c = \sum_{r=0}^{n} {\binom{2n+1}{2r}} 3^{2n+1-2r} (-1)^{r}$$
,

352 and

.

•

$$d = \sum_{r=0}^{n} {\binom{2n + 1}{2r + 1}} 3^{2n+1-(2r+1)} (-1)^{r} .$$

Lemma 2. $c \neq 0 \pmod{5}$ and $d \neq 0 \pmod{5}$. Proof.

$$c \equiv \sum_{r=0}^{n} {\binom{2n+1}{2r+1}} (-2)^{2n+1-2r} (-1)^{r} \pmod{5}$$
$$\equiv -\sum_{r=0}^{n} {\binom{2n+1}{2r}} 2^{2n+1-2r} (-1)^{r} \pmod{5}$$
$$\equiv -\frac{(1-2i)^{2n+1}+(1+2i)^{2n+1}}{2i} \pmod{5}.$$

If $c \equiv 0 \pmod{5}$ then since 5 = (1 + 2i)(1 - 2i) and hence $c \equiv 0 \pmod{1 + 2i}$, which is not true and hence $c \not\equiv 0 \pmod{5}$. Similarly it can be proved that $d \not\equiv 0 \pmod{5}$. Moreover from (13) we have

(14)
$$c^2 + d^2 = (25)^{2n+1} \equiv 0 \pmod{25}$$
.

Since $c \neq 0$, $d \neq 0 \pmod{5}$ it is easy to see that (c,d) = 1 and hence there exist a number a such that

(15)
$$c \equiv ad \pmod{25}$$
.

Using (11) and (12), Eq. (10) simplifies to

(16)
$$3c + 4d \equiv 0 \pmod{25}$$
.

Therefore to prove (10), we need to prove (16). Substitute (15) into (14) to get $1 + a^2 \equiv 0 \pmod{25}$ which yields that either (a) $a \equiv 7 \pmod{25}$ or (b) $a \equiv 18 \pmod{25}$. We then prove that condition (a) can only be satisfied and thus will reject condition (b). Assume that (b) is satisfied, i.e., $c \equiv 18d \pmod{25}$ or

(17)
$$c \equiv 3d \pmod{5}$$
.

We show that (17) is impossible. We have proved that

$$c \equiv -\frac{(1 - 2i)^{2n+1} + (1 + 2i)^{2n+1}}{2i} \pmod{5}$$
.

Similarly it can be proved that

$$D \equiv \frac{(1 + 2i)^{2n+1} + (1 - 2i)^{2n+1}}{2} \pmod{5}.$$

Substituting these expressions in (17) it can be easily proved that (17) will not even hold for modulus (1 + 2i) or (1 - 2i). Hence (17) is impossible and condition (b) cannot be satisfied. Therefore condition (a) has to be satisfied and hence $c \equiv 7d \pmod{25}$. Using this congruence we find that (16) is satisfied and hence we have proved the truth of (10). Using these results and (9), from (8) we get $S_{4n+2} \equiv S_{4n+22} \pmod{100}$. But $S_{4n+2} \equiv 52 \pmod{100}$ and therefore $S_{4n+22} \equiv 52 \pmod{100}$ and hence if (2) is true for $n \ge 0$ it is also true for n + 5. From Krick's [7] table for S_{2n} up to S_{20} we find that (2) is true for n = 1, 2, 3, 4. Also using (3) we verify that $S_{22} \equiv 52 \pmod{100}$. Thus by the usual method of induction (2) has been established.

ACKNOWLEDGEMENTS

The authors wish to thank Professor L. Carlitz, whose helpful comments were instrumental in removing some errors in our results.

REFERENCES

- L. Carlitz, "The Goefficients of cosh x/cos x," <u>Math. Mag.</u>, Vol. 32 (1959), pp. 132, 136.
- L. Carlitz, "The Coefficients of cosh x/cos x," <u>Monatshefte für Mathematik</u>, Vol. 69 (1965), pp. 129-135.
- 3. J. M. Gandhi, "The Coefficients of cosh x/cos x, etc.," <u>Math. Mag.</u>, Vol. 31 (1958), pp. 185-191.
- 4. J. M. Gandhi, "The Coefficients of x(sinh x/cos x)," <u>Bull. of Canadian Math. Soc.</u>, Vol. 13 (1970), pp. 305-310.
- 5. J. M. Gandhi, "Sixth Interval Formula for the Coefficients of cosh x/cos x," Communicated for Publication.
- 6. J. M. Gandhi and Ajaib Singh, "Fourth Interval Formulae for the Coefficients of cosh x/ cos x," Monatshefte für Mathematik, Vol. 70 (1966), pp. 327-329.
- M. S. Krick, "The Coefficients of cosh x/cos x," <u>Math. Mag.</u>, Vol. 34 (1960), pp. 37-40.
- 8. Werner Raab, "Teilbarkeitseigenschaften verallgemeinerter Tangential-koeffizienten," Crell's Journal, Vol. 241 (1970), pp. 7-14.
- H. Salie, "Arithmetische Eigenchaften der Koeffizienten einer Speziellen Hurwitzschen Potenzreihe," Wissenchaftliche Zeitacheift der Karl-Mark-Universitat Leipzig – 12. Jahrgang 1973, Math. Naturwiss. Reihe, Heft 3, pp. 617-618.

→ />**→**

1972]