A DISTRIBUTION PROPERTY OF THE SEQUENCE OF FIBONACCI NUMBERS

LAWRENCE KUIPERS and JAU-SHYOW SHUE
Southern Illinois University, Carbondale, Illinois

Let \(\{F_n\} \) \((n = 1, 2, \cdots)\) be the Fibonacci sequence. Then in order to prove the main theorems of this paper we need the following lemmas (see [2]).

Lemma 1. Every Fibonacci number \(F_k \) divides every Fibonacci number \(F_{nk} \) for \(n = 1, 2, \cdots \).

Lemma 2. \((F_m, F_n) = F_{(m,n)} \) where \((x,y) \) denotes the greatest common divisor of the integers \(x \) and \(y \).

Lemma 3. Every positive integer \(m \) divides some Fibonacci number whose index does not exceed \(m^2 \).

Lemma 4. Let \(p \) be an odd prime and \(p \neq 5 \). Then \(p \) does not divide \(F_p \).

Proof of Lemma 4. According to [1], p. 394, we have that either \(F_{p-1} \) or \(F_{p+1} \) is divisible by \(p \). From the well known identity \(F_{n+1} F_{n-1} - F_n^2 = (-1)^n \), we derive that \(p \nmid F_p \).

Definition 1. The sequence of integers \(\{x_n\} \) \((n = 1, 2, \cdots)\) is said to be uniformly distributed mod \(m \) where \(m \geq 2 \) is an integer, provided that

\[
\lim_{N \to \infty} \frac{1}{N} \cdot A(N, j, m) = \frac{1}{m}
\]

for each \(j, j = 0, 1, \cdots, m-1 \), where \(A(N, j, m) \) is the number of \(x_n \), \(n = 1, 2, \cdots, N \), that are congruent to \(j \) (mod \(m \)).

Theorem 1. Let \(\{F_n\} \) \((n = 1, 2, \cdots)\) be the Fibonacci sequence. Then \(\{F_n\} \) is uniformly distributed mod 5.

Proof. Let all \(F_n \) \((n = 1, 2, \cdots)\) be reduced mod 5. Then we obtain the following sequence of least residues:

\[1, 1, 2, 3, 0, 3, 1, 4, 0, 4, 0, 3, 2, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, 3, \cdots\]

Obviously, this sequence is periodic with the period length 20. Now evidently

\[
\lim_{N \to \infty} \frac{1}{N} \cdot A(N, j, 5) = \frac{1}{5}
\]

for \(j = 0, 1, 2, 3, 4 \).

or, \(\{F_n\} \) is uniformly distributed mod 5.

Theorem 2. Let \(\{F_n\} \) \((n = 1, 2, \cdots)\) be the Fibonacci sequence. Then \(\{F_n\} \) is not uniformly distributed mod 2.

Proof. This follows from the fact that the sequence of least residues of \(\{F_n\} \) is \(1, 1, 0, 1, 1, 0, \cdots \).
Theorem 3. Let \(\{F_n\} \) \((n = 1, 2, \cdots)\) be the Fibonacci sequence. Then \(\{F_n\} \) is not uniformly distributed mod \(p \) for any prime \(p > 2 \) and \(\neq 5 \).

Proof. Let \(p \) be a prime \(>2 \) and \(\neq 5 \). Because of Lemmas 3 and 4 there exists a positive integer \(t \neq p \) such that \(F_t \equiv 0 \pmod{p} \). We may suppose that \(t \) is the smallest positive integer with this property. By Lemma 1, we have \(F_{kt} \equiv 0 \pmod{p} \) for \(k = 1, 2, \cdots \). Now there does not exist a positive integer \(q \) with \(kt < q < (k + 1)t \) \((k = 1, 2, \cdots)\) such that \(F_q \equiv 0 \pmod{p} \), for otherwise there would exist an \(r \) \((0 < r < t)\) with \(F_r \equiv 0 \pmod{p} \), which can be seen as follows. Let there be a \(q \) with the aforementioned property, then by virtue of Lemma 2, we would have

\[
(F_{kt}, F_q) = F_{(kt, q)} = 0 \pmod{p}.
\]

Now write \(q = kt + r \) \((0 < r < t)\) and therefore

\[
(kt, q) = (kt, kt + r) = (kt, r) \leq r < t.
\]

Because of the above property of \(t \) we have that

\[
A(N, 0, p) = \left(\frac{N}{t}\right),
\]

where \([a]\) denotes the integral part of \(a \), and \(A(N, 0, p) \) is related to the Fibonacci sequence (see Definition 1). Let

\[
N = \left[\frac{N}{t}\right] t + r
\]

with \(0 \leq r < t \). Then

\[
A(N, 0, p) = \frac{N - r}{t},
\]

and therefore

\[
\frac{1}{N} \cdot A(N, 0, p) = \frac{1}{t} - \frac{r}{Nt},
\]

so

\[
\lim_{N \to \infty} \frac{1}{N} \cdot A(N, 0, p) = \frac{1}{t} \quad (t \neq p)
\]

for any prime \(p \geq 2 \) and \(\neq 5 \). Hence \(\{F_n\} \) is not uniformly distributed mod \(p \) for any prime \(p > 2 \) and \(\neq 5 \).

Theorem 4. Let \(\{F_n\} \) \((n = 1, 2, \cdots)\) be the Fibonacci sequence. Then \(\{F_n\} \) is not uniformly distributed mod \(m \) for any composite integer \(m > 2 \) and \(m \neq 5^k \) \((k = 3, 4, \cdots)\).

Proof. Suppose that \(\{F_n\} \) is uniformly distributed mod \(m \) for some composite integer \(m \) as indicated in the theorem. According to a theorem of I. Niven [3], Theorem 5.1, [Continued on page 392.]