A DISTRIBUTION PROPERTY OF THE SEQUENCE OF FIBONACCI NUMBERS

LAWRENCE KUIPERS and JAU-SHYONG SHIUE
 Southern Illinois University, Carbondale, Illinois

Let $\left\{F_{n}\right\}(n=1,2, \cdots)$ be the Fibonacci sequence. Then in order to prove the main theorems of this paper we need the following lemmas (see [2]).

Lemma 1. Every Fibonacci number F_{k} divides every Fibonacci number F_{nk} for $\mathrm{n}=$ $1,2, \cdots$.

Lemma 2. $\left(\mathrm{F}_{\mathrm{m}}, \mathrm{F}_{\mathrm{n}}\right)=\mathrm{F}_{(\mathrm{m}, \mathrm{n})}$ where (x, y) denotes the greatest common divisor of the integers x and y .

Lemma 3. Every positive integer m divides some Fibonacci number whose index does not exceed m^{2}.

Lemma 4. Let p be an odd prime and $\neq 5$. Then p does not divide F_{p}.
Proof of Lemma 4. According to [1], p. 394, we have that either F_{p-1} or F_{p+1} is divisible by p. From the well known identity $F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n}$, we derive that $p / / F_{p}$.

Definition 1. The sequence of integers $\left\{x_{n}\right\}(n=1,2, \cdots)$ is said to be uniformly distributed mod m where $m \geq 2$ is an integer, provided that

$$
\lim _{\mathrm{N}}{ }^{\frac{1}{N}} \cdot A(\mathrm{~N}, \mathrm{j}, \mathrm{~m})=\frac{1}{\mathrm{~m}}
$$

for each $j, j=0,1, \cdots, m-1$, where $A(N, j, m)$ is the number of $x_{n}, n=1,2, \ldots$, N , that are congruent to $\mathrm{j}(\bmod \mathrm{m})$.

Theorem 1. Let $\left\{F_{n}\right\}(n=1,2, \ldots)$ be the Fibonacci sequence. Then $\left\{F_{n}\right\}$ is uniformly distributed mod 5 .

Proof. Let all $\mathrm{F}_{\mathrm{n}}(\mathrm{n}=1,2, \cdots)$ be reduced $\bmod 5$. Then we obtain the following sequence of least residues:
$1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,, \cdots$

Obviously, this sequence is periodic with the period length 20. Now evidently

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \cdot A(N, j, 5)=\frac{1}{5} \quad \text { for } \quad j=0,1,2,3,4,
$$

or, $\left\{F_{n}\right\}$ is uniformly distributed mod 5 .
Theorem 2. Let $\left\{F_{n}\right\}(n=1,2, \cdots)$ be the Fibonacci sequence. Then $\left\{F_{n}\right\}$ is not uniformly distributed mod 2 .

Proof. This follows from the fact that the sequence of least residues of $\left\{F_{n}\right\}$ is 1,1 , $0,1,1,0, \cdots$ 。

Theorem 3. Let $\left\{\mathrm{F}_{\mathrm{n}}\right\}(\mathrm{n}=1,2, \cdots)$ be the Fibonacci sequence. Then $\left\{\mathrm{F}_{\mathrm{n}}\right\}$ is not uniformly distributed mod p for any prime $p>2$ and $\neq 5$.

Proof. Let p be a prime >2 and $\neq 5$. Because of Lemmas 3 and 4 there exists a positive integer $\mathrm{t} \neq \mathrm{p}$ such that $\mathrm{F}_{\mathrm{t}} \equiv 0(\bmod \mathrm{p})$. We may suppose that t is the smallest positive integer with this property. By Lemma 1 , we have $F_{k t} \equiv 0(\bmod p)$ for $k=1,2$, \cdots. Now there does not exist a positive integer q with $k t<q<(k+1) \mathrm{t}(\mathrm{k}=1,2, \cdots)$ such that $\mathrm{F}_{\mathrm{q}} \equiv 0(\bmod \mathrm{p})$, for otherwise there would exist an $\mathrm{r}(0<\mathrm{r}<\mathrm{t})$ with $\mathrm{F}_{\mathrm{r}} \equiv 0$ ($\bmod \mathrm{p}$), which can be seen as follows. Let there be a q with the aforementioned property, then by virtue of Lemma 2, we would have

$$
\left(\mathrm{F}_{\mathrm{kt}}, \mathrm{~F}_{\mathrm{q}}\right)=\mathrm{F}_{(\mathrm{kt}, \mathrm{q})} \equiv 0(\bmod \mathrm{p})
$$

Now write $q=k t+r(0<r<t)$ and therefore

$$
(\mathrm{kt}, \mathrm{q})=(\mathrm{kt}, \mathrm{kt}+\mathrm{r})=(\mathrm{kt}, \mathrm{r}) \leq \mathrm{r}<\mathrm{t} .
$$

Because of the above property of t we have that

$$
A(N, 0, p)=\left[\frac{N}{t}\right]
$$

where [a] denotes the integral part of a, and $A(N, 0, p)$ is related to the Fibonacci sequence (see Definition 1). Let

$$
\mathrm{N}=\left[\frac{\mathrm{N}}{\mathrm{t}}\right] \mathrm{t}+\mathrm{r}
$$

with $0 \leq r<t$. Then

$$
A(N, 0, p)=\frac{N-r}{t},
$$

and therefore

$$
\frac{1}{\mathrm{~N}} \cdot \mathrm{~A}(\mathrm{~N}, 0, \mathrm{p})=\frac{1}{\mathrm{t}}-\frac{\mathrm{r}}{\mathrm{Nt}},
$$

so

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \cdot A(N, 0, p)=\frac{1}{t} \quad(t \neq p)
$$

for any prime $p>2$ and $\neq 5$. Hence $\left\{F_{n}\right\}$ is not uniformly distributed mod p for any prime $\mathrm{p}>2$ and $\neq 5$.

Theorem 4. Let $\left\{F_{n}\right\} \quad(n=1,2, \cdots)$ be the Fibonacci sequence. Then $\left\{F_{n}\right\}$ is not uniformly distributed mod m for any composite integer $m>2$ and $m \neq 5^{k} \quad(\mathrm{k}=3$, 4, \cdots).

Proof. Suppose that $\left\{F_{n}\right\}$ is uniformly distributed mod m for some composite integer m as indicated in the theorem. According to a theorem of I. Niven [3], Theorem 5.1, [Continued on page 392.]

