DISTRIBUTION OF FIBONACCI NUMBERS MOD 5^{k}

HARALD NIEDERREITER

Southern Illinois University, Carbondale, Illinois

It was shown by L. Kuipers and Jau-shyong Shiue [2] that the only moduli for which the Fibonacci sequence $\left\{F_{n}\right\}, n=1,2, \cdots$, can possibly be uniformly distributed are the powers of 5 . In addition, the authors proved the Fibonacci sequence to be uniformly distributed mod 5, and they conjectured that this holds for all other powers of 5 as well. In this note, we settle this conjecture in the affirmative. Thus we show, in particular, that the Fibonacci sequence attains values from each residue class $\bmod 5^{\mathrm{k}}$, and each residue class occurs with the same frequency. The weaker property of the existence of a complete residue system mod m in the Fibonacci sequence was investigated earlier by A. P. Shah [3] and G. Bruckner [1]. For definitions and terminology we refer to [2].

Theorem. The Fibonacci sequence $\left\{F_{n}\right\}, n=1,2, \cdots$, is uniformly distributed $\bmod 5^{\mathrm{k}}$ for all $\mathrm{k} \geq 1$.

Before we start the proof, let us collect some useful preliminaries. It follows from a result of D. D. Wall [5, Theorem 5] that $\left\{\mathrm{F}_{\mathrm{n}}\right\}$, considered mod 5^{k}, has period 4.5^{k}. Therefore it will suffice to show that, among the first $4 \cdot 5^{\mathrm{k}}$ elements of the sequence, we find exactly four elements, or, equivalently, at most four elements from each residue class $\bmod 5{ }^{\mathrm{k}}$. It will also be helpful to know that, for $\mathrm{j} \geq 1$, the largest exponent e such that 5^{e} divides $(2 j+1)$! satisfies (see [4]):

$$
\begin{equation*}
e=\sum_{i=1}^{\infty}\left[\frac{2 j+1}{5^{i}}\right] \lessdot \sum_{i=1}^{\infty} \frac{2 j+1}{5^{i}}=\frac{2 j+1}{4}<j \tag{1}
\end{equation*}
$$

We note the formula

$$
\begin{equation*}
\binom{r+s}{t}=\sum_{i=0}^{t}\binom{r}{i}\binom{s}{t-i} \tag{2}
\end{equation*}
$$

with non-negative integers r, s, and t, and $\binom{n}{j}=\underset{r+s}{0}$ for $j>n$, which can be quickly verified by comparing the coefficients of x^{t} in $(1+x)^{r+s}=(1+x)^{r}(1+x)^{s}$.

Proof of the Theorem. We proceed by induction on k. For $k=1$, the result was already shown in [2]. Now assume that, for some $k \geq 2$ and every integer a, the congruence $F_{n} \equiv a\left(\bmod 5^{k-1}\right)$ has exactly four solutions c with $1 \leq c \leq 4 \cdot 5^{k-1}$. If n is a solution of $\mathrm{F}_{\mathrm{n}} \equiv \mathrm{a}(\underset{\mathrm{mod}}{\operatorname{m}-1}), 1 \leq \mathrm{n} \leq 4 \cdot 5^{\mathrm{k}}$, then $\mathrm{F}_{\mathrm{n}} \equiv \mathrm{a}\left(\bmod 5^{\mathrm{k}-1}\right)$, hence by periodicity: $\mathrm{n} \equiv \mathrm{c}\left(\bmod 4 \cdot 5^{\mathrm{k}-1}\right)$ for one of the four $\mathrm{c}^{\prime} \mathrm{s}$. We complete the proof by showing that each value of c yields at most one solution n. For suppose we also have $F_{m} \equiv a\left(\bmod 5^{k}\right)$,
$1 \leq \mathrm{m} \leq 4.5^{\mathrm{k}}, \mathrm{m} \equiv \mathrm{c}\left(\bmod 4.5^{\mathrm{k}-1}\right)$, and WLOG $\mathrm{n} \geq \mathrm{m}$. Then, in particular, $\mathrm{F}_{\mathrm{n}} \equiv \mathrm{F}_{\mathrm{m}}$ $\left(\bmod 5^{\mathrm{k}}\right)$ and $\mathrm{n} \equiv \mathrm{m}\left(\bmod 4 \cdot 5^{\mathrm{k}-1}\right)$. Using the well-known representation

$$
F_{n}=2^{1-n} \sum_{j=0}^{\infty} 5^{j}(2 j+1),
$$

where $\binom{\mathrm{n}}{\mathrm{r}}=0$ for $\mathrm{r}>\mathrm{n}$, we arrive at

$$
\sum_{j=0}^{k-1} 5^{j}(2 j+1) \equiv 2^{n-m} \sum_{j=0}^{k-1} 5^{j}(2 j+1)\left(\bmod 5^{k}\right)
$$

Since $2^{4 \cdot 5^{\mathrm{k}-1}} \equiv 1\left(\bmod 5^{\mathrm{k}}\right)$ by the Euler-Fermat Theorem, we get

$$
\begin{equation*}
\sum_{j=0}^{k-1} 5^{j}\left(\left(2{ }^{n}+1\right)-(2 j+1)\right) \equiv 0\left(\bmod 5^{k}\right) \tag{3}
\end{equation*}
$$

We claim that, for $j \geq 1$, the corresponding term in this sum is divisible by 5^{k}. By (2):

$$
5^{j}\left(\binom{n}{2 j+1}-\binom{m}{2 j+1}\right)=\sum_{i=1}^{2 j+1} 5^{j}\binom{n-m}{i}\binom{m}{2 j+1-i}
$$

We look at $5^{j}\binom{n-m}{i}$. From (1) we see that cancelling out $5^{\prime} s$ from i ! against 5^{j} leaves at least one power of 5 in the latter number. Since there is a factor 5^{k-1} in $n-m$, we get the desired divisibility property. Thus, from (3), we are left with the term corresponding to $\mathrm{j}=0: \mathrm{n}-\mathrm{m} \equiv 0\left(\bmod 5^{\mathrm{k}}\right)$. Together with $\mathrm{n} \equiv \mathrm{m}\left(\bmod 4 \cdot 5^{\mathrm{k}-1}\right)$, this implies $\mathrm{n} \equiv$ $\mathrm{m}\left(\bmod 4.5^{\mathrm{k}}\right)$ or $\mathrm{n}=\mathrm{m}$.

ACKNOWLEDGEMENT

I wish to thank Prof. L. Kuipers for drawing my attention to this problem.

REFERENCES

1. G. Bruckner, "Fibonacci Sequence modulo a prime $p \equiv 3(\bmod 4), "$ Fibonacci Quarterly, 8 (1970), No. 2, pp. 217-220.
2. L. Kuipers and Jau-shyong Shiue, "A Distribution Property of the Sequence of Fibonacci Numbers," Fibonacci Quarterly, Vol. 10, No. 4, pp.
3. A. P. Shah, "Fibonacci Sequence Modulo m," Fibonacci Quarterly, 6 (1968), No. 2, pp. 139-141.
4. I. M. Vinogradov, Elements of Number Theory, Dover Publications, New York, 1954.
5. D. D. Wall, "Fibonacci Series Modulo m," Amer. Math. Monthly 67 (1960), pp. 525-532.
