$$
\mathrm{b}_{\mathrm{k}}=\frac{1}{\sqrt{-11}}\left\{\left(\frac{1+\sqrt{-11}}{2}\right)^{\mathrm{k}}-\left(\frac{1-\sqrt{-11}}{2}\right)^{\mathrm{k}}\right\}, \quad \mathrm{k} \geq 1
$$

Thus

$$
b_{k}=\frac{1}{2^{k}-1} \sum_{j=0}^{\left[\frac{k-1}{2}\right]}\binom{k}{2 j+1}(-11)^{j}, \quad k \geq 1
$$

The desired result follows by observing

$$
\mathrm{b}_{6 \mathrm{n}+3}=\frac{1}{2^{6 \mathrm{n}+2}} \mathrm{c}_{\mathrm{n}}
$$

Editorial Note: Please submit solutions for any of the problem proposals. We need fresh blood:

A GOLDEN SECTION SEARCH PROBLEM

REX H. SHUDDE
Naval Post Graduate School, Monterey, California

After tiring of using numerous quadratic functions as objective functions for examples in my mathematical programming course, I posed the following problem for myself: Design a unimodal function over the $(0,1)$ interval which is concave, has a maximum in the interior of $(0,1)$, and is not a quadratic function. The purpose was to demonstrate numerically the golden section search.*

My first thoughts were to add two functions which are concave over the $(0,1)$ interval with the property that one goes to $-\infty$ at 0 and the other goes to $-\infty$ at 1 . My two initial choices were $\log \mathrm{x}$ and $1 /(\mathrm{x}-1)$. The golden section search starts at the two points $\mathrm{x}_{1}=$ $1-(1 / \phi)$ and $x_{2}=1 / \phi$ where $\phi=(1+\sqrt{5}) / 2$. After searching with 8 points, I noticed that the interval of uncertainty still contained the first search point so I thought it about time to find the location of the maximum analytically. I was dumfounded to discover that if I continued indefinitely with the search my interval of uncertainty would still contain the initial search point.

[^0]
[^0]: * Douglas J. Wilde, Optimum Seeking Methods, Prentice Hall, Inc. (1964).

