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It is fairly well known that F ,_, v = 0 (modp), where p is an odd prime; F is 
th p - w p ; p 

the p Fibonacci number, and (5/p) is the Legendre symbol. Three different proofs of 
this theorem are given in [1] , [2] , and [3]. 

My method of proof of this theorem is based on the restr icted periods of generalized 
Fibonacci sequences reduced modulo p and the existence of what I call Fibonacci groups 
modulo certain pr imes . 

Look at the congruence: a + ax = ax2 (mod p). This implies ax' ~ + ax = ax 
(mod p). Solving for x: x = (1 ± N/"5)/2 (mod p). Thus we can solve for x iff 5 is a 
quadratic residue of p > 2. If a = 1 (mod p), the recursion relation: a + ax = ax2 (mod 
p) will generate the successive te rms: (1, x, x2, • • • , x11, • • •)» and we will have a Fibon-
acci group. 

As an example of a Fibonacci group, solve x = (1 ± ^ 5)/2 (mod 11). We see x = 
(1 ±4) /2 (mod 11) = 4 or 8 (mod 11). If x = 4 (mod 11), we get the group (1, 4, 5, 0, 3) 
and if x = 8 (mod 11), we obtain the group (1, 8, 9, 6, 4, 10, 3, 2, 5, 7). In each case 
each term is the sum of the preceding two terms (mod 11) and is a constant multiple of the 
preceding term. 

Definitions. Let { H } be a generalized Fibonacci sequence (hereafter called G. F. S.) 
reduced modulo p; Et = a, H2 = b; H = H _1 + H _2 (mod p); p an odd prime. 

{H } is periodic modulo p. Let /z(a, b, p) be the period of the G. F. S. which begins 
with (a,b) modulo p. That i s , fx(a, b, p) is the least positive integer n such that H = 
H0 = H2 - Hi and H n + 1 = H1 (mod p). 

Also, let or (a, b, p) be the restr ic ted period of {H } (mod P). Thus, #(a, b, p) is 
the least positive integer m such that H = sHQ and H +1 = sH 1 (mod p) for some s. 
Let s(a, b, p) = s (mod p); s(a, b, p) will be called the multiplier of { H n ) (mod p). 

Theorem 1. If the initial pair (a,b) of {Hn} £ (0, 0), (a, a(l + \lb)/2), or (a, a(l -

\/"5)/2) (modp), then or (a, b, p) = a(l9 1, p), s(a, b, p) = s ( l , 1, p), and ti (a, b , p) = 

M(l» 1. P). 

Proof. Write out the Fibonacci ser ies reduced modulo p from F t to F ^ ^ y 
There will be / i( l , 1, p) consecutive pairs in this sequence if we count (F u , v, F - ) = (0, 1) 
(mod p) as a consecutive pair of te rms . If a pair (c,d) does not appear in this sequence, 
s ta r t another G. F. S. with this pair up to H , , y No pair will be repeated since each 
pair determines each term that follows and precedes by the recursion relation, and each 
G. F . S. is periodic modulo p. 
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One can continue this process until all the p2 possible pa i rs are used up. We shall 
need three lemmas to finish the proof. 

Lemma 1. Any linear combination of two G. F. S. fs yields a G. F. S. 
Proof. Let ( G } , ( H }, be two G. F. STs. Then 

L nJ ' l nJ 

rG - + sH - + rG + sH = r(G - + G ) + s(H - + H ) = rG ,- + sH ,- , n-1 n-1 n n n-1 n n-1 n n+1 n+1 

and the recursion relation is still satisfied. 
Now, we can express any pair of t e rms (a,b) as (b - a): 

(F0, F t ) + a ( F l s F 2 ) = (b - a)(0,1) + a ( l , l ) = (b - a , a ) f J J j . 

Lemma 2. For all G. F . S. ( H } , 

( I W , l , p ) + l > H a ( l , l , p ) + 2 ) E s ( l , l , p ) ( a ,b ) ; a = H1? b = H2 , 

Proof. Let a(l, 1, p) = n. Then 

( F n j F n + l ) ~ s ( l , l , p ) ( F 0 , Tt) 
and 

( F n + 1 , F n + 2 ) s s ( l , l , p ) ( F 1 , F2) (modp), 

by definition. But 

(H ^ , H ^ 0 ) = (b - a)(F , F - ) + a(F ^ , F _,_„) n+1 n+2 n ' n+1 n+1' n+2 
= (b - a J s d . l . p X F o . F i ) + ( a ) s ( l , l , p ) (F i ,F 2 ) = s ( l , l , p ) ( a , b ) (modp). 

H i l a r y : ( H M( l , l ,p )+ l ' H /x ( l f l .p )+2 ) 5 ( a ' b ) > 

This proof is exactly the same as that for Lemma 2. It is interesting to note that this 
corollary implies that length of a Fibonacci group ^ / i( l , l , p ) . 

Lemma 3. If b ^ a(l ± ^ 5 ) / 2 , then #(a,b,p) = a?(l , l ,p) . (Note that if (a,b) = 
(F1? F2) = (1,1), then b ^ a(l •+. \H})/2 (mod p) since this implies that N/ 5 = +1. (mod p), 
which is false for p ^ 3.) 

Proof. Assume that this assert ion is false for some { H } , where b ^ a(l ± */5)/2. 
Let a(a ,b ,p) = n. By Lemma 2, n <f l : ( l , l ,p ) . Then 
( H n + l ' H n + 2 ) " s ( a ^ , p ) ( a , b ) = (b - a) (F n , F n + 1 ) + a (F n + 1 > F R + 2 ) (modp) . 

Let F - = x-FA = x and F 9 = y-F2 = y; x ^ y since n < a ( l , l s p ) . Then 
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H n + 2 _ s(a ,b ,p)b = b =
 ( b - a ) F n + l + a F n+2 

H n + 1 s(a ,b ,p)a a (b - a )F n + a F n + 1 

( b - a ) F n + 1 + a F n + 2 (b - a)x + ay , „ , 
" (b - a ( F n + 2 - F n + 1 ) + a F n + 1 " (b - a)(y - x) + ax ( m o d P>" 

Thus, 
b bx - ax + ay , , . 
a 5 by - ay - bx + 2ax < m o d P> ' 

I claim that neither a nor (by - ay - bx + 2ax = H - ) = 0 (mod p). If a E 0, then 
(a,b) = (0,0) o r (a,b) = (0,k), k ^ 0 (modp). The pair (0,0) is excluded by hypo the s i s , 
and if (a,b) = (0,k), {H } is a non-zero multiple of the Fibonacci sequence. Since the 
residues modulo p form a field, there are no divisors of 0 and a multiple of the Fibonacci 
sequence will have the same rest r ic ted period. Therefore n = <*(l,l,p) and we have a con-
tradiction. If H - = 0 (modp), the same argument leads to a contradiction. 

The congruence 

lb _ bx - ax + ay , , . 
a " by - ay - bx + 2ax ^ 

leads to the congruence 

b2(y - x) - ab(y - x) - a2(y - x) = 0 (mod p) . 

Dividing through by the non-zero (y - x) and solving for b , we obtain b = a(l ± N / 5 ) / 2 , a 
contradiction. Q. E.D. 

Corollary. If b £ a( l ± <s/"5)/2, then s(a,b,p) = s ( l , l , p ) and ^ ( a , b , p ) = ^ (a ,b ,p ) . 
This follows from Lemma 2, its corollary and Lemma 3. 
With the help of the three lemmas and their corol lar ies , Theorem 1 is now proved. 
We are now ready to prove the main theorem that F _/5/D\ = ° (mod p). Of the p2 

possible pa i r s of t e rms which appear in some G. F .S . reduced modulo p , one pair (0,0) 
forms the trivial sequence (0, 0, 0, • • • ) . We will now look at the p2 - 1 pai rs remaining. 

If (5/p) = 1, then there a re two solutions to the congruence: x = (1 ± \fE)/2, and we 
can form two Fibonacci groups. By Lagrange's theorem, each group has length (p - D / k j , 
(i = 1, 2). If we count the k. non-zero multiples of each group, there will be 2(p - 1) pa i rs 
of te rms in some non-zero multiple of a Fibonacci group. That leaves p2 - 1 - 2(p - 1) = 
(p - l ) 2 pa i rs remaining. 

We will say that two res t r ic ted periods belong to the same equivalence class if some 
pair of consecutive te rms of one restr ic ted period is a non-zero multiple of a pair of another 
res t r ic ted period reduced modulo p. In each equivalence c lass , there are p - 1 non-zero 
multiples of each res t r ic ted period. Suppose there a re k equivalence c lasses of res t r ic ted 
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periods of length a ( l , l , p ) . Then if (5/p) = 1, there will be (p - l ) 2 pa i rs in these equiva-
lence c lasses : (p - l)(k) • or(l , l ,p) = (p - l ) 2 , and af(l , l ,p) = (p - l ) /k . Since there are 
no divisors of 0 (mod p), only t e rms which are multiples of (p - l ) / k will be E 0 (mod p). 
In part icular , F . = 0 (mod p). 

If (5/p) = 0, then p = 5 and \]T> = 0 (modp). Thus, there is only one root of the 
congruence: x E (1 ± ^ 5 ) / 2 - x = 3 mod 5. This leads to the Fibonacci group (1, 3, 4, 2). 
Excluding the trivial pair (0,0), there a re p2 - 1 - (p - 1) pai rs which are not members of 
multiples of Fibonacci groups (mod p). Then p(p - 1) = (p - l)(k) • a ( l , l , p ) , and # ( l , l , p ) = 
p/k. This implies that F = 0 (mod p). 

If (5/p) = - 1 , there are no Fibonacci groups (mod p), and p2 - 1 = (p - l ) (k )a ( l , l , p ) . 
Thus, or(l , l ,p) = (p + l ) /k , and F + 1 s 0 (modp). Q. E. D. 

This theorem can easily be generalized. Let us define a Fibonacci-like sequence { J } 
as one which satisfies the recursion relation: J - = aJ + bJ -; a ,b positive integers. In 
accordance with the notation of Robert P. Backstrom [ 4 ] , I will call the Fibonacci-like s e -
quence beginning with ( l ,a) the pr imary sequence. If b ^ 0 (modp), then by the r ecur -
rence relation bJ0 = j 2 - a ^ = a - a(l) = 0, which implies that J0 = 0 (modp). Thus, if 
b ^ 0 (modp), the pr imary sequence ( j } will be absolutely periodic and J , , will be 
= 0 (mod p). It should be noted that only in multiples of a pr imary sequence will all but a 
finite number of pr imes (excepting possibly only those pr imes that divide b) divide some 
positive te rm of the sequence, 

We can form a Fibonacci-like group analogous to the Fibonacci group by solving the 
congruence: be + acx = ex2 (mod p) for x; x = (a ± ^ a 2 + 4b) /2 . As an example of such a 
group, if a = 1, b = 3, then a Fibonacci-like group exists iff (a2 + 4b/p) = (13/p) = 0 or 
1, if p = 17, then a solution of x = (1 ± \ /13) /2 = (1 ± 8)/2 (mod 17) is x = 13 mod 17, 
and this gives r i se to the Fibonacci-like group (1, 13, 16, 4). 

As before, any arbi t rary Fibonacci-like sequence is the l inear combination of two p r i -
mary sequences. If (c,d) are two consecutive te rms of a Fibonacci-like sequence a n d { j } 
is a pr imary sequence, then 

(c,d) = (d - acMJo,^) + c(J l 3 J2) = (d - ac)(0, l) + c ( l , a ) = (d - ac •o»(!i)-
Let a2 + 4b = k. If b ^ 0 (mod p), p an odd pr ime, then by an argument analogous 

to the one above, we can prove the theorem: J _,, / , = 0 (mod p) if { J } is the pr imary 
sequence. 

If a ^ 0 (modp), b = 0 (modp), then solving the congruence: 

x E (a ± Nla2 + 4b)/2 = (a + N/ a 2 ) /2 (mod p) , 

we see that x = a or 0 (modp). Thus, the pr imary sequence generated by ( l ,a) will be 
a Fibonacci-like group and no positive term will be divisible by p. 
[Continued on page 354. ] 


