FIBONACCI NUMBERS OBTAINED FROM PASCAL'S TRIANGLE WITH GENERALIZATIONS

H. C. WILLIAMS

University of Manitoba, Winnepeg 19, Canada

1. INTRODUCTION

Consider the following array of numbers obtained from the first k lines of Pascal's Triangle.

1	0	0	\cdots	0
1	1	0	\cdots	0
1	2	1	\cdots	0
1	$\binom{k-1}{1}$	$\binom{k-1}{2}$	\cdots	1
k	$\binom{k}{2}$	$\binom{k}{3}$	\cdots	1
$2 k-1$	$2\binom{k}{2}$	\cdots	2	
$4 k-3$	$4\binom{k}{2}$	$4\binom{k}{3}$	\cdots	4

If we let the element in the $i+1^{\text {th }}$ column and $n^{\text {th }}$ row be $F_{i, n}$, then $F_{i, n}=\binom{n}{i}(n, i=$ $0,1,2, \cdots, k-1$) and

$$
F_{i, n}=\sum_{j=1}^{k} F_{i, n-j} \quad(i=0,1,2, \cdots, k-1 ; \quad|n|=k, k+1, \cdots)
$$

If $\mathrm{k}=2, \mathrm{~F}_{0, \mathrm{n}}=\mathrm{f}_{\mathrm{n}+1}, \mathrm{~F}_{1, \mathrm{n}}=\mathrm{f}_{\mathrm{n}}$, where f_{n} is the $\mathrm{n}^{\text {th }}$ Fibonacci number; and if $\mathrm{k}=3$, $F_{1, n}=L_{n+1}$ and $F_{2, n}=K_{n-1}$, where L_{n} and K_{n} are the general Fibonacci numbers of Waddill and Sacks [8]. Also, $\mathrm{F}_{\mathrm{k}-1, \mathrm{~h}}=\mathrm{f}_{\mathrm{h}, \mathrm{k}}$ where the $\mathrm{f}_{\mathrm{n}, \mathrm{k}}$ are the k -generalized Fibonacci numbers of Miles [5], and $F_{0 . n}=U_{k, n}$ of Ferguson [2]. Both the numbers $f_{n, k}$ and $\mathrm{U}_{\mathrm{k}, \mathrm{n}}$ are of use in polyphase merge sorting techniques (see, for example, Gilstad [3] and Reynolds [6]).

The purpose of this paper is to investigate some of the properties of a more general set of functions which include the functions $F_{i, n}(i=0,1,2, \cdots, k-1)$ and several others as special cases.

2. NOTATION AND DEFINITIONS

Let $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\mathrm{k}}\right\}$ be a fixed set of k integers such that

$$
\mathrm{F}(\mathrm{x})=\mathrm{x}^{\mathrm{k}}-\alpha_{1} \mathrm{x}^{\mathrm{k}-1}+\alpha_{2} \mathrm{x}^{\mathrm{k}-2}+\cdots+(-1)^{\mathrm{k}} \alpha_{\mathrm{k}}
$$

has distinct zeros $\rho_{0}, \rho_{1}, \cdots, \rho_{k-1}$. Let $a_{0}, a_{1}, \cdots, a_{k-1}$ be any k integers and define

$$
\phi_{i}=\sum_{j=0}^{k-1} \mathrm{a}_{\mathrm{j}} \rho_{\mathrm{i}}^{\mathrm{j}} \quad(\mathrm{i}=0,1,2, \cdots, \mathrm{k}-1)
$$

Finally, let

$$
\begin{aligned}
\mathrm{D} & =\left[\begin{array}{lllll}
1 & \rho_{0} & \rho_{0}^{2} & \cdots & \rho_{0}^{\mathrm{k}-1} \\
1 & \rho_{1} & \rho_{1}^{2} & \cdots & \rho_{1}^{\mathrm{k}-1} \\
\hdashline 1 & \rho_{\mathrm{k}-1} & \rho_{\mathrm{k}-1}^{2} & \cdots & \rho_{\mathrm{k}-1}^{\mathrm{k}-1}
\end{array}\right] \\
\Delta & =|\mathrm{D}| .
\end{aligned}
$$

We shall concern ourselves with the functions
(2.1)

$$
\begin{aligned}
& A_{i, n}= \frac{1}{\Delta}\left|\begin{array}{llllllll}
1 & \rho_{0} & \cdots & \rho_{0}^{\mathrm{i}-1} & \phi_{0}^{\mathrm{n}} & \rho_{0}^{\mathrm{i}+1} & \cdots & \rho_{0}^{\mathrm{k}-1} \\
1 & \rho_{1} & \cdots & \rho_{1}^{\mathrm{k}-1} & \phi_{1}^{\mathrm{n}} & \rho_{1}^{\mathrm{i}+1} & \cdots & \rho_{1}^{\mathrm{k}-1} \\
1 & \rho_{\mathrm{k}-1} & \cdots & \rho_{\mathrm{k}-1}^{\mathrm{i}-1} & \phi_{\mathrm{k}-1}^{\mathrm{n}} & \rho_{\mathrm{k}-1}^{\mathrm{i}+1} & \cdots & \rho_{\mathrm{k}-1}^{\mathrm{k}-1}
\end{array}\right| \\
&(\mathrm{i}=0,1,2, \cdots, \mathrm{k}-1) .
\end{aligned}
$$

It is clear that

$$
\begin{equation*}
A_{i, n}=\frac{1}{\Delta} \sum_{j=0}^{k-1} c_{i j} \phi_{j}^{n} \quad(i=0,1,2, \cdots, k-1) \tag{2.2}
\end{equation*}
$$

where c_{ij} is the cofactor of $\rho_{\mathrm{i}}^{\mathrm{j}}$ in D .
If $a_{1}=1, a_{i}=0(i=0,2,3, \cdots, k-1)$, we have $\phi_{i}=\rho_{i}$; and, in this case, we define $A_{i, n}$ to be $z_{i, n}$. These functions, which are quite useful in the determination of the
properties of $A_{i, n}$, have been dealt with in some detail by authors such as Bell [1], Ward [9] and Selmer [7], When $\alpha_{i}=(-1)^{i+1}(i=1,2, \cdots, k),\left\{z_{k-1, n}\right\}$ is the general Fibonacci sequence discussed by Miles [5] and Williams [10].

Since matrix methods are advantageous in the treatment of the $A_{i, n}$ functions, we introduce the following:

$$
\begin{aligned}
& C=\frac{1}{\Delta}\left[\begin{array}{lccc}
c_{00} & c_{10} & \cdots & c_{k-1} 0 \\
c_{01} & c_{11} & \cdots & c_{k-11} \\
\hdashline c_{0 k-1} & c_{1 k-1} & \cdots & c_{k-1 k-1}
\end{array}\right], \\
& C_{i}=\operatorname{diag}\left(c_{i 0}, c_{i 1}, \cdots, c_{i k-1}\right) \text {, } \\
& Z_{i}=\left[\begin{array}{llll}
z_{i, 0} & z_{i, 1} & \cdots & z_{i, k-1} \\
z_{i, 1} & z_{i, 2} & \cdots & z_{i, k} \\
\hdashline z_{i, k-1} & z_{i, k} & \cdots & z_{i, 2 k-2}
\end{array}\right] \\
& P_{n, r}=\left[\begin{array}{cccc}
\phi_{0}^{n} & \phi_{1}^{n} & \cdots & \phi_{k-1}^{n} \\
\phi_{0}^{n+r} & \phi_{1}^{n+r} & \cdots & \phi_{k-1}^{n+r} \\
\hdashline \phi_{0}^{\mathrm{n}+(\mathrm{k}-1) \mathrm{r}} & \phi_{1}^{\mathrm{n}+(\mathrm{k}-1) \mathrm{r}} & \cdots & \phi_{\mathrm{k}-1}^{\mathrm{n}+(\mathrm{k}-1) \mathrm{r}}
\end{array}\right] \\
& B_{n, r}=\left[\begin{array}{cccc}
A_{0, n} & A_{1, n} & \cdots & A_{k-1, n} \\
A_{0, n+r} & A_{1, n+r} & \cdots & A_{k-1, n+r} \\
\hdashline-\cdots & A_{1, n+(k-1) r} & \cdots & A_{k-1, n+(k-1) r}
\end{array}\right] \\
& B_{i, n, r}=\left[\begin{array}{ccc}
A_{i, n} & & A_{i, n+(k-1) r} \\
A_{i, n+r} & A_{i, n+2 r} & A_{i, n+k r} \\
\hdashline-1 & A_{i, n+(k-1) r} & A_{i, n+k r} \\
A_{i, n+(2 k-2) r}
\end{array}\right] \\
& \text { 3. SPECIAL CASES }
\end{aligned}
$$

The $A_{i, n}$ functions include a number of interesting functions as special cases. We have already mentioned the $z_{i_{2} n}$ functions in the previous section and in this section we describe several other special cases. We first show the relation of the function $F_{i, n}$ to $A_{i, n}$.

Let $H_{j}(j=1,2, \ldots, k)$ be the $j^{\text {th }}$ elementary symmetric function of $\phi_{0}, \phi_{1}, \cdots$, $\phi_{\mathrm{k}-1}$, then

$$
\begin{equation*}
A_{i, n}=\sum_{j=1}^{k}(-1)^{j+1} H_{j} A_{i, n-j} \tag{3.1}
\end{equation*}
$$

If

$$
\alpha_{i}=(-1)^{i}\left[\binom{n}{i}-\binom{n}{i-1}\right] \quad(i=1,2, \cdots, k)
$$

and $a_{0}=a_{1}=1, a_{i}=0(i=2,3, \cdots, k-1)$, we have $\phi_{i}=1+\rho_{i}$ and $H_{j}=(-1)^{j+1}$. Hence,

$$
A_{i, n}=\sum_{j=1}^{k} A_{i, n-j}
$$

and

$$
A_{i, n}=\binom{n}{i} \quad(0 \leq i, \quad n \leq k-1)
$$

thus, in this case,

$$
A_{i, n}=F_{i, n}
$$

When $k-2, \alpha_{1}=1-2 a, \alpha_{2}=a^{2}-a-1, a_{0}=a, a_{1}=1$, we have $H_{1}=1, H_{2}=$ -1 , and $A_{0, n}=a f_{n}+f_{n-1}, A_{i, n}=f_{n}$. If $\alpha_{1}=0, \alpha_{2}=-5, a_{0}=a_{1}=1$, we have

$$
\mathrm{A}_{0, \mathrm{n}}=2^{\mathrm{n}-1_{\ell}} \quad \text { and } \quad \mathrm{A}_{1, \mathrm{n}}=2^{\mathrm{n}-1_{\mathrm{f}}^{\mathrm{n}}},
$$

where ℓ_{n} is the $n^{\text {th }}$ Lucas number. If $\left(x_{1}, y_{1}\right)$ is the fundamental solution of the Pell equation

$$
\begin{gather*}
x^{2}-d y^{2}=1 \tag{3.2}\\
\alpha_{1}=0, \quad \alpha_{2}=-d, \quad a_{0}=x_{1}, \quad a_{1}=y_{1}
\end{gather*}
$$

Then $A_{0, n}=x_{n}$ and $A_{1, n}=y_{n}$, where $\left(x_{n}, y_{n}\right)$ is the $n^{\text {th }}$ solution of (3.2).
When $\mathrm{k}=3$, we also have some interesting cases. For example, if $\alpha_{1}=\alpha_{2}=\alpha_{3}=$ 2 and $a_{0}=-a_{1}=a_{2}=1$, we have $H_{1}=-H_{2}=H_{3}=1$ and $A_{0, n}=U_{3, n}, A_{1, n}=-L_{n-1}$, $A_{2, n}=f_{3, n+1}=K_{n}$. If (x_{1}, y_{1}, z_{1}) is a fundamental solution of the diophantine equation (Mathews [4])

$$
\begin{equation*}
x^{3}+d y^{3}+d^{2} z^{3}-3 d x y z=1 \tag{3.3}
\end{equation*}
$$

and $\alpha_{0}=\alpha_{2}=0, \alpha_{3}=d, a_{0}=x_{1}, a_{1}=y_{1}, a_{2}=z_{1}$, then all the solutions of (3.3) are given by

$$
\left(\mathrm{A}_{0, \mathrm{n}}, \mathrm{~A}_{1, \mathrm{n}}, \mathrm{~A}_{2, \mathrm{n}}\right) \quad(|\mathrm{n}|=0,1,2, \cdots)
$$

4. IDENTITIES

We now obtain several of the important relations satisfied by the $A_{i, n}$ functions. It will be seen that each of these relations is a generalization of a corresponding identity satisfied by the Fibonacci numbers. The most important properties of the Fibonacci numbers are the identities which connect the numbers f_{n+m}, f_{n-m} and $f_{n m}$ to other Fibonacci numbers. For the sake of convenience, we shall call these relations the addition, subtraction, and multiplication formulas.

By (2.1),

$$
B_{i, n+m, r}=P_{n, r} C_{i} P_{m, r}^{\prime}
$$

where we denote by B^{\prime} the transpose of the matrix B. Since

$$
\begin{gathered}
C D=D C=I \\
B_{i, n+m, r}=P_{n, r} C^{\prime} D^{\prime} C_{i} D C P_{m, r}^{\prime}=B_{n, r} Z_{i} B_{m, r}^{\prime}
\end{gathered}
$$

hence,

$$
A_{i, m+n}=\left(A_{0, n} A_{1, n} A_{2, n} \cdots A_{k, n}\right) Z_{i}\left(A_{0, m} A_{1, m} \cdots A_{k, m}\right)^{\prime}
$$

$$
\begin{equation*}
=\sum_{h=0}^{k-1} \sum_{j=0}^{k-1}{ }_{i, h+j} A_{h, n} A_{j, m} . \tag{4.1}
\end{equation*}
$$

This is the addition formula for $A_{i, n}$.
By the definition of $A_{i, n}$ it follows that

$$
\begin{equation*}
\phi_{i}^{m}=\sum_{j=0}^{\mathrm{k}-1} \mathrm{~A}_{\mathrm{j}, \mathrm{~m}} \rho_{\mathrm{i}}^{\mathrm{j}} \tag{4.2}
\end{equation*}
$$

thus,

$$
\begin{aligned}
\rho_{i}^{h} \phi_{i}^{m} & =\sum_{j=0}^{k-1} \rho_{i}^{j+h} A_{j, m} \\
& =\sum_{j=0}^{k-1} \rho_{i}^{h}\left(\sum_{j=0}^{k-1} z_{h, j+k} A_{j, m}\right)
\end{aligned}
$$

Now if $H=H_{k}=\phi_{0} \phi_{1} \phi_{1} \cdots \phi_{\mathrm{k}-1}$,

By (4.2)

$$
\begin{aligned}
& \text { (4.3) } \quad H^{m} A_{i, n-m}=
\end{aligned}
$$

this is the subtraction formula for $A_{i, n}$.
Since

$$
\begin{gathered}
A_{i, n m}=\frac{1}{\Delta} \sum_{j=0}^{k-1} c_{i j} \phi_{j}^{n m}, \\
A_{i, n m}=\sum_{j=0}^{k}\left(\Delta^{-1} c_{i j}\right)\left(\sum_{h=0}^{k-1} A_{h, m} \rho_{j}^{h}\right)^{m}
\end{gathered}
$$

From (4.2), we get the multiplication formula

$$
A_{i, n m}=\sum \frac{m!}{i_{1}!i_{2}!\cdots i_{k}!} \prod_{j=1}^{k} A_{j, m}^{i_{j}}{ }_{i, s},
$$

where the sum is taken over all non-negative integers $i_{1}, i_{2}, \cdots, i_{k}$ such that $\sum_{i}=m$; and $\sum(\mathrm{j}-1) \mathrm{i}_{\mathrm{j}}$.

We may easily evaluate the determinants of $B_{n, r}$ and $B_{i, n, r}$ by first introducing the matrix.

$$
\mathrm{Q}_{\mathrm{n}}=\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\phi_{0}^{\mathrm{n}} & \phi_{1}^{\mathrm{n}} & \ldots & \phi_{\mathrm{k}-1}^{\mathrm{n}} \\
\cdots \ldots \ldots & \ldots \ldots \ldots \ldots & \ldots \ldots & \ldots \\
\phi_{0}^{(\mathrm{k}-1) \mathrm{n}} & \phi_{1}^{(\mathrm{k}-1) \mathrm{n}} & \cdots & \phi_{\mathrm{k}-1}^{(\mathrm{k}-1) \mathrm{n}}
\end{array}\right|
$$

Now

$$
Q_{n} C=\left|\begin{array}{cccc}
A_{0,0} & A_{1,0} & \ldots & A_{k-1,0} \\
A_{0, n} & A_{1, n} & \ldots & A_{k-1, n} \\
\ldots \\
A_{0,(k-1) n} & A_{1,(k-1) n} & \cdots & A_{k-1,(k-1) n}
\end{array}\right|
$$

hence

$$
\left|Q_{n}\right|=\Delta\left|\begin{array}{ccc}
A_{1, n} & \cdots & A_{k, n} \\
A_{1,2 n} & \ldots & A_{k, 2 n} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
A_{1,(k-1) n} & \cdots & A_{k,(k-1) n}
\end{array}\right|
$$

Since

$$
\left|P_{n, r}\right|=H^{n}\left|Q_{r}\right|
$$

we have
and

$$
\left|B_{n, r}\right|=\frac{H^{n}}{\Delta}\left|\begin{array}{ccc}
A_{1, r} & \cdots & A_{n-1, r} \tag{4.5}\\
A_{1,2 r} & \cdots & A_{n-1,2 r} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
A_{1,(k-1) r} & \cdots & A_{n-1,(k-1) r}
\end{array}\right|
$$

.

REFERENCES

1. E. T. Bell, "Notes on Recurring Series of the Third Order," Tohoku Math. Journal, Vol. 24 (1924), pp. 168-184.
2. David E. Ferguson, "An Expression for Generalized Fibonacci Numbers," Fibonacci Quarterly, Vol. 4 (1966), pp. 270-273.
3. R. L. Gistad, "Polyphase Merge Sorting - An Advanced Technique," Proc. Eastern Joint Computer Conference, Dec. 1960.
4. C. B. Mathews, "On the Arithmetic Theory of the Form $x^{3}+n y^{3}+n^{2} z^{3}-3 n x y z$," Proc. London Math. Soc., Vol. 21 (1891), pp. 280-287.
5. E. P. Miles, Jr., "Generalized Fibonacci Numbers and Associated Matrices," Amer. Math. Monthly, Vol. 67 (1960), pp. 745-752.
6. S. W. Reynolds, "A Generalized Polyphase Merge Algorithm," Communications of the ACM, Vol. 4 (1961), pp. 347-349.
7. E. S. Seimer, Linear Recurrence Relations over Finite Fields, University of Bergen, Norway, 1966.
8. M. E. Waddill and L. Sacks, "Another Generalized Fibonacci Sequence," Fibonacci Quarterly, Vol. 5 (1967), pp. 209-222.
9. Morgan Ward, "The Algebra of Recurring Series," Annals of Math., Vol. 32 (1931), pp. 1-9.
10. H. C. Williams, "On a Generalization of the Fibonacci Numbers," Proc. Louisiana Conference on Combinatorics, Graph Theory and Computing, Louisiana State University, Baton Rouge, March 1-5 1970, pp. 340-356.
[Continued from page 401.]

[Continued from pase

REFERENCES

1. Brother U. Alfred, "Exploring Special Fibonacci Relations," Fibonacci Quarterly, Vol. 4, Oct., 1966, pp. 262-263.
2. D. Zeitlin, "Power Identities for Sequences Defined by $W_{n+2}=d W_{n+1}-c W_{n}$," Fibonacci Quarterly, Vol. 3, Dec. 1965, pp. 241-256.
[Continued from page 404.]

REFERENCES

1. A. F. Horadam, American Math. Monthly, Vol. 68 (1961), pp. 751-753.
2. C. W. Trigg, Mathematical Quickies, McGraw Hill (1967), pp. 69, 198.
3. E. M. Cohn, submitted to Fibonacci Quarterly.
4. A. F. Horadam, American Math. Monthly, Vol. 68 (1961), pp. 455-459.
-••ANNOUNCEMENT. . .

The Editor (who always parks in a Fibonacci-numbered parking space) noted the following in the latest publication of the Fibonacci Association, A Primer for the Fibonacci Numbers: There are 13 authors, each of whom wrote a Fibonacci number of articles. Each coauthor has a Fibonacci number of articles with a given co-author. There are 11 articles with one author, and 13 articles have co-authors. Of the twenty-four articles, 13 are Primer articles, and 11 are not.

The Primer, co-edited by Marjorie Bicknell and V. E. Hoggatt, Jr., is a compilation of elementary articles which have appeared over the years. These articles were selected and edited to give the reader a comprehensive introduction to the study of Fibonacci sequences and related topics. The 175-page Primer will be available in the Fall of 1972 at a cost of $\$ 5.00$.

