A PRODUCT IDENTITY FOR SEQUENCES DEFINED BY $\mathbf{W}_{\mathrm{n}+2}=\mathbf{d W _ { n + 1 }}-\mathbf{c} \mathbf{W}_{\mathrm{n}}$
 DAVID ZEITLIN
 Minneapolis, Minnesota

1. INTRODUCTION

Let $W_{0}, W_{1}, c \neq 0$, and $d \neq 0$ be arbitrary real numbers, and define

$$
\begin{equation*}
W_{n+2}=d W_{n+1}-c W_{n}, \quad d^{2}-4 c \neq 0, \quad(n=0,1, \cdots), \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{z}_{\mathrm{n}}=\left(\mathrm{a}^{\mathrm{n}}-\mathrm{b}^{\mathrm{n}}\right) /(\mathrm{a}-\mathrm{b}) \quad(\mathrm{n}=0,1, \cdots) \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{V}_{\mathrm{n}}=\mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}} \quad(\mathrm{n}=0,1, \cdots) \tag{1.3}
\end{equation*}
$$

where $a \neq b$ are the roots of $y^{2}-d y+c=0$. We shall define

$$
\begin{equation*}
\mathrm{W}_{-\mathrm{n}}=\left(\mathrm{W}_{0} \mathrm{~V}_{\mathrm{n}}-\mathrm{W}_{\mathrm{n}}\right) / \mathrm{c}^{\mathrm{n}} \quad(\mathrm{n}=0,1, \cdots) . \tag{1.4}
\end{equation*}
$$

If $\mathrm{W}_{0}=0$ and $\mathrm{W}_{1}=1$, then $\mathrm{W}_{\mathrm{n}} \equiv \mathrm{Z}_{\mathrm{n}}, \mathrm{n}=0,1, \cdots$; and if $\mathrm{W}_{0}=2$ and $\mathrm{W}_{1}=\mathrm{d}$, then $\mathrm{W}_{\mathrm{n}} \equiv \mathrm{V}_{\mathrm{n}}, \mathrm{n}=0,1, \cdots$. The phrase, Lucas functions (of n) is often applied to Z_{n} and V_{n}.

It should be noted that

$$
\begin{equation*}
\mathrm{W}_{\mathrm{n}}=\mathrm{W}_{0} \mathrm{Z}_{\mathrm{n}+1}+\left(\mathrm{W}_{1}-\mathrm{dW}_{0}\right) \mathrm{Z}_{\mathrm{n}} \quad(\mathrm{n}=0,1, \cdots) ; \tag{1.5}
\end{equation*}
$$

and we shall refer to $Z_{n}, n=0,1, \cdots$, as the fundamental solution of (1.1). Let W_{n}^{*} be a second, general solution of (1.1) with initial values W_{0}^{*} and W_{1}^{*}. Since $\mathrm{W}_{\mathrm{n}}^{*}$ also satisfies (1.5), we now see that the product sequence, $\mathrm{W}_{\mathrm{n}} \mathrm{W}_{\mathrm{n}}^{*}$, can be represented as a linear combination of $Z_{n+1}^{2}, Z_{m} Z_{n+1}$, and Z_{n}^{2}. We observe that

$$
\begin{equation*}
\mathrm{W}_{\mathrm{n}} \mathrm{~W}_{\mathrm{n}}=\mathrm{C}_{1} \mathrm{a}^{2 \mathrm{n}}+\mathrm{C}_{2} \mathrm{~b}^{2 \mathrm{n}}+\mathrm{C}_{3} \mathrm{c}^{\mathrm{n}} \quad(\mathrm{n}=0,1, \cdots) \tag{1.6}
\end{equation*}
$$

where $C_{i}, i=1,2,3$, are arbitrary constants, is the general solution of a third-order linear difference equation whose characteristic equation is

$$
\begin{equation*}
(x-c)\left(x^{2}-V_{2} x+c^{2}\right)=0 \tag{1.7}
\end{equation*}
$$

If the initial conditions of W_{n} and $\mathrm{W}_{\mathrm{n}}^{*}$ are chosen such that $\mathrm{C}_{3} \equiv 0$, then $\mathrm{W}_{\mathrm{n}} \mathrm{W}_{\mathrm{n}}^{*}$ is also a solution of a second-order linear difference equation, and its representation is of interest.

2. STATEMENT OF RESULTS

Theorem 1. Let W_{n} and $\mathrm{W}_{\mathrm{n}}^{*}, \mathrm{n}=0,1, \ldots$, be solutions of (1.1). Then (see (1.6))

$$
\begin{equation*}
\mathrm{W}_{2} \mathrm{~W}_{2}^{*}-\mathrm{V}_{2} \mathrm{~W}_{1} \mathrm{~W}_{1}^{*}+\mathrm{c}^{2} \mathrm{~W}_{0} \mathrm{~W}_{0}^{*}=0 \tag{2.1}
\end{equation*}
$$

is a necessary and sufficient condition that $\mathrm{C}_{3} \equiv 0$. If $\mathrm{C}_{3} \equiv 0$, then

$$
\begin{equation*}
\mathrm{W}_{\mathrm{n}} \mathrm{~W}_{\mathrm{n}}^{*}=\left(\left(\mathrm{W}_{1} \mathrm{~W}_{1}^{*}-\left(\mathrm{d}^{2}-\mathrm{c}\right) \mathrm{W}_{0} \mathrm{~W}_{0}^{*}\right) / \mathrm{d}\right) \mathrm{Z}_{2 \mathrm{n}}+\mathrm{W}_{0} \mathrm{~W}_{0}^{*} \mathrm{Z}_{2 \mathrm{n}+1} \tag{2.2}
\end{equation*}
$$

and if $\mathrm{P}_{\mathrm{n}} \equiv \mathrm{W}_{\mathrm{n}} \mathrm{W}_{\mathrm{n}}^{*}$, then

$$
\begin{equation*}
P_{n+2}-V_{2} P_{n+1}+c^{2} P_{n}=0 \quad(n=0,1, \cdots) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{P_{0}+\left(P_{1}-V_{2} P_{0}\right) x}{1-V_{2} x+c^{2} x^{2}}=\sum_{n=0}^{\infty} P_{n} x^{n}, \quad\left(V_{2}=d^{2}-2 c\right) \tag{2.4}
\end{equation*}
$$

Corollary 1. If $d=-c=1$, then $W_{n} \equiv H_{n}$, where H_{n} is the generalized Fibonacci number. Since $V_{2}=3$ and $Z_{n} \equiv F_{n}$, the ordinary Fibonacci number, we obtain from (2.2)

$$
\begin{align*}
\mathrm{H}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}}^{*} & =\left(\mathrm{H}_{1} \mathrm{H}_{1}^{*}-2 \mathrm{H}_{0} \mathrm{H}_{0}^{*}\right) \mathrm{F}_{2 \mathrm{n}}+\mathrm{H}_{0} \mathrm{H}_{0}^{*} \mathrm{~F}_{2 \mathrm{n}+1} \\
& =\mathrm{H}_{1} \mathrm{H}_{1}^{*} \mathrm{~F}_{2 \mathrm{n}}-\mathrm{H}_{0} \mathrm{H}_{0}^{*} \mathrm{~F}_{2 \mathrm{n}-2} \tag{2.5}
\end{align*}
$$

(since $\mathrm{F}_{2 \mathrm{n}+1}=2 \mathrm{~F}_{2 \mathrm{n}}-\mathrm{F}_{2 \mathrm{n}-2}$), where (see (2.1))

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{H}_{2}^{*}-3 \mathrm{H}_{1} \mathrm{H}_{1}^{*}+\mathrm{H}_{0} \mathrm{H}_{0}^{*}=0 \tag{2.6}
\end{equation*}
$$

If $H_{n}^{*}=H_{n-1}+H_{n+1} \equiv G_{n}, n=0,1, \cdots$, then (2.6) is satisfied and thus (2.5) gives

$$
\begin{equation*}
H_{n} G_{n}=H_{1} G_{1} F_{2 n}-H_{0} G_{0} F_{2 n-2} \quad(n=0,1, \cdots) ; \tag{2.7}
\end{equation*}
$$

and from (2.4), we obtain

$$
\begin{equation*}
\frac{H_{0} G_{0}+\left(H_{1} G_{1}-3 H_{0} G_{0}\right) x}{1-3 x+x^{2}}=\sum_{n=0}^{\infty} H_{n} G_{n} x^{n} \tag{2.8}
\end{equation*}
$$

Remarks. Our special result (2.7) solves completely the problem posed by Brother U. Alfred [1], where (2,9), for example, must stand for $\left(H_{0}, H_{1}\right)$, and not, as incorrectly
indicated $\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)$. If $\mathrm{H}_{\mathrm{n}} \equiv \mathrm{F}_{\mathrm{n}}$, then $\mathrm{G}_{\mathrm{n}} \equiv \mathrm{L}_{\mathrm{n}}$, and (2.7) reduces to the well-known identity, $\mathrm{F}_{\mathrm{n}} \mathrm{L}_{\mathrm{n}}=\mathrm{F}_{2 \mathrm{n}}$; and (2.8) gives

$$
\frac{x}{1-3 x+x^{2}}=\sum_{n=0}^{\infty} F_{2 n} x^{n}
$$

3. PROOF OF THEOREM 1

For $\mathrm{n}=0,1$, and 2, Eq. (1.6) gives a linear system of three equations for the three unknowns C_{1}, C_{2}, and C_{3}. We readily find that $C_{3}=N / D$, where $D=c d(a-b)^{3} \neq 0$ is the determinant of the system

$$
\begin{equation*}
\mathrm{W}_{0} \mathrm{~W}_{0}^{*}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{W}_{1} \mathrm{~W}_{1}^{*}=\dot{\mathrm{a}}^{2} \mathrm{C}_{1}+\mathrm{b}^{2} \mathrm{C}_{2}+\mathrm{cC}_{3} \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{W}_{2} \mathrm{~W}_{2}^{*}=\mathrm{a}^{4} \mathrm{C}_{1}+\mathrm{b}^{4} \mathrm{C}_{2}+\mathrm{c}^{2} \mathrm{C}_{3} \tag{3.3}
\end{equation*}
$$

and

$$
\mathrm{N}=\left|\begin{array}{rrr}
1 & 1 & \mathrm{~W}_{0} \mathrm{~W}_{0}^{*} \\
\mathrm{a}^{2} & \mathrm{~b}^{2} & \mathrm{~W}_{1} \mathrm{~W}_{1}^{*} \\
\mathrm{a}^{4} & \mathrm{~b}^{4} & \mathrm{~W}_{2} \mathrm{~W}_{2}^{*}
\end{array}\right|
$$

If we set $N=0$, we obtain the necessary condition (2.1) for $C_{3}=0$.
For the sufficiency proof, we assume that (2.1) is true. If we multiply both sides of (3.1) by c^{2} and both sides of (3.2) by $-\mathrm{V}_{2}$, then the addition of the resulting equations to (3.3) gives, using (2.1),

$$
\begin{equation*}
0=\left(c^{2}-a^{2} V_{2}+a^{4}\right) C_{1}+\left(c^{2}-b^{2} V_{2}+b^{4}\right) C_{2}+\left(c^{2}-c V_{2}+c^{2}\right) C_{3} \tag{3.4}
\end{equation*}
$$

Since $c=a b$ and $V_{2}=a^{2}+b^{2}$, we obtain from (3.4)

$$
0=-\mathrm{ab}(\mathrm{a}-\mathrm{b})^{2} \mathrm{C}_{3}
$$

Since $\mathrm{a} \neq \mathrm{b} \neq 0$, we must have $\mathrm{C}_{3}=0$.
If $\mathrm{C}_{3} \equiv 0$, then (see (1.6))

$$
\mathrm{P}_{\mathrm{n}} \equiv \mathrm{~W}_{\mathrm{n}} \mathrm{~W}_{\mathrm{n}}^{*}=\mathrm{C}_{1} \mathrm{a}^{2 \mathrm{n}}+\mathrm{C}_{2} \mathrm{~b}^{2 \mathrm{n}}, \quad \mathrm{n}=0,1, \cdots
$$

Since $P_{0}=C_{1}+C_{2}$, we obtain, respectively, noting (1.2),

$$
\begin{array}{ll}
P_{n}=C_{2}(b-a) Z_{2 n}+P_{0} a^{2 n} & (n=0,1, \cdots), \tag{3.5}\\
P_{n}=C_{1}(a-b) Z_{2 n}+P_{0} b^{2 n} & (n=0,1, \cdots) .
\end{array}
$$

Evaluating C_{2} in (3.5) (for $\mathrm{n}=1$) and C_{1} in (3.6) (for $\mathrm{n}=1$), we obtain, respectively, after simplification,

$$
\begin{align*}
& P_{n}=\left[\left(P_{1}-a^{2} P_{0}\right) / d\right] Z_{2 n}+P_{0} a^{2 n} \quad(n=0,1, \cdots), \tag{3.7}\\
& P_{n}=\left[\left(P_{1}-b^{2} P_{0}\right) / d\right] Z_{2 n}+P_{0} b^{2 n} \quad(n=0,1, \cdots) .
\end{align*}
$$

Addition of (3.7) and (3.8) gives

$$
\begin{equation*}
2 \mathrm{P}_{\mathrm{n}}=\left[\left(2 \mathrm{P}_{1}-\mathrm{V}_{2} \mathrm{P}_{0}\right) / \mathrm{d}\right] \mathrm{Z}_{2 \mathrm{n}}+\mathrm{P}_{0} \mathrm{~V}_{2 \mathrm{n}} \quad(\mathrm{n}=0,1, \cdots) \tag{3.9}
\end{equation*}
$$

Since (see (1.5)) $V_{2 n}=2 Z_{2 n+1}-\mathrm{dZ}_{2 n}$, we obtain from (3.9)
(3.10)

$$
2 \mathrm{dP} \mathrm{P}_{\mathrm{n}}=\left(2 \mathrm{P}_{1}-\mathrm{P}_{0}\left(\mathrm{~V}_{2}+\mathrm{d}^{2}\right)\right) \mathrm{Z}_{2 \mathrm{n}}+2 \mathrm{dP}_{0} \mathrm{Z}_{2 \mathrm{n}+1}
$$

Noting that $V_{2}+d^{2}=2 d^{2}-2 c$, we obtain from (3.10),

$$
\begin{equation*}
P_{n}=\left[\left(P_{1}-P_{0}\left(d^{2}-c\right)\right) / d\right] Z_{2 n}+P_{0} Z_{2 n+1} \tag{3.11}
\end{equation*}
$$

Since $P_{n} \equiv W_{n} W_{n}^{*}$, Eq. (3.11) reduces to (2.2).
If we set $\left(E^{2}-V_{2} E+c^{2}\right) W_{n} W_{n}^{*}=Q_{n}$, where $E^{m} A_{n}=A_{n+m}$, then (1.7) becomes

$$
\begin{equation*}
(\mathrm{E}-\mathrm{c}) \mathrm{Q}_{\mathrm{n}}=0 \tag{3.12}
\end{equation*}
$$

The solution to (3.12) is

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{n}}=\mathrm{Kc} \mathrm{n}^{\mathrm{n}} \quad(\mathrm{~K}, \text { a constant }) \tag{3.13}
\end{equation*}
$$

But $K=Q_{0}$, and so (3.13) reads

$$
\begin{equation*}
\mathrm{W}_{\mathrm{n}+2} \mathrm{~W}_{\mathrm{n}+2}^{*}-\mathrm{V}_{2} \mathrm{~W}_{\mathrm{n}+1} \mathrm{~W}_{\mathrm{n}+1}^{*}+\mathrm{c}^{2} \mathrm{~W}_{\mathrm{n}} \mathrm{~W}_{\mathrm{n}}^{*}=\mathrm{Q}_{0} \mathrm{c}^{\mathrm{n}} \tag{3.14}
\end{equation*}
$$

where

$$
\mathrm{Q}_{0}=\mathrm{W}_{2} \mathrm{~W}_{2}^{*}-\mathrm{V}_{2} \mathrm{~W}_{1} \mathrm{~W}_{1}^{*}+\mathrm{c}^{2} \mathrm{~W}_{0} \mathrm{~W}_{0}^{*}
$$

If (2.1) is true, then $Q_{0}=0$, and $P_{n} \equiv W_{n} W_{n}^{*}$ satisfies (2.3); and (2.4) follows readily from (2.3).

4. COMMENTS

If $\mathrm{W}_{\mathrm{n}}^{*}=\mathrm{W}_{\mathrm{n}-1}-(1 / \mathrm{c}) \mathrm{W}_{\mathrm{n}+1}$ in Theorem 1, then (2.1) is satisfied. For example, if $\mathrm{W}_{\mathrm{n}+2}=2 \mathrm{~W}_{\mathrm{n}+1}+\mathrm{W}_{\mathrm{n}}$, then $\left\{\mathrm{Z}_{\mathrm{n}}\right\}_{0}^{\infty}=\{0,1,2,5,12, \ldots\}$, where Z_{n} is Pell's sequence. If we choose

$$
\left\{\mathrm{w}_{\mathrm{n}}\right\}_{0}^{\infty}=\{2,3,8,19, \cdots\}
$$

and set

$$
\mathrm{w}_{\mathrm{n}}^{*}=\mathrm{w}_{\mathrm{n}-1}+\mathrm{w}_{\mathrm{n}+1}
$$

then

$$
\left\{\mathrm{W}_{\mathrm{n}}\right\}_{0}^{\infty}=\{2,10,22, \cdots\}
$$

and since $d=2$ and $c=-1$, we obtain from (2.2) in Theorem 1
(4.1)

$$
\mathrm{W}_{\mathrm{n}} \mathrm{~W}_{\mathrm{n}}^{*}=5 \mathrm{Z}_{2 \mathrm{n}}+4 \mathrm{Z}_{2 \mathrm{n}+1} \quad(\mathrm{n}=0,1, \cdots),
$$

where Z_{n} is Pell's sequence.
Using results of the author [2, p. 242], it seems reasonable that the conclusions of Theorem 1 may be extended (properly interpreted) to p products of solutions of (1.1), where $\mathrm{p}=2,4,6, \cdots$. For example, if $\mathrm{P}_{\mathrm{n}}=\mathrm{W}_{\mathrm{n}} \mathrm{W}_{\mathrm{n}}^{*} \mathrm{~W}_{\mathrm{n}}^{* *} \mathrm{~W}_{\mathrm{n}}^{* * *}$, where $\mathrm{W}_{\mathrm{n}}, \mathrm{W}_{\mathrm{n}}^{*}, \mathrm{~W}_{\mathrm{n}}^{* *}$, and $\mathrm{W}_{\mathrm{n}}^{* * *}$ are independent solutions of (1.1), then P_{n} satisfies a fifth-order linear difference equation (see [2, (2.2), p. 242] whose characteristic equation is

$$
\begin{equation*}
\left(x-c^{2}\right) \prod_{j=0}^{1}\left(x^{2}-c^{j} V_{4-2 j} x+c^{4}\right)=0 \tag{4.2}
\end{equation*}
$$

Since

$$
P_{n}=C_{1} a^{4 n}+C_{2}\left(a^{3} b\right)^{n}+C_{3} c^{2 n}+C_{4}\left(a b^{3}\right)^{n}+C_{5} b^{4 n}
$$

we believe that $\mathrm{C}_{3} \equiv 0$ if and only if

$$
\begin{equation*}
\left[\prod_{j=0}^{1}\left(E^{2}-c^{j} V_{4-2 j}^{E}+c^{4}\right)\right] P_{0}=0 \tag{4.3}
\end{equation*}
$$

However, the representation of P_{n} under (4.3) is another matter.
For the case $d^{2}=4 c, d \neq 0$, it appears that (2.2) of Theorem 1 holds under (2.1). Moreover, if $2 W_{1}=\mathrm{dW}_{0}$, then (2.1) holds for any arbitrary sequence $W_{n^{\circ}}^{*}$ Since $a=b$, we have $\mathrm{Z}_{\mathrm{n}}=\mathrm{na}^{\mathrm{n}-1}, \mathrm{n}=0,1, \cdots$, in (2.2).
[Continued on page 412.]
14. J. G. Hagen, Synopsis der höheren Mathematik, Berlin, Vol. 1, 1891.
15. Douglas Lind, Personal communication of 24 June 1967.
16. E. Netto, Lehrbuch der Combinatorik, 2nd Ed., Leipsig, 1927.
17. John Riordan, Combinatorial Identities, Wiley, New York, 1968.
18. Fred. Schuh, Een combinatorisch beginsel met verschillende toepassingen, c. a. op kansvraagstukken, Niew Archief voor Wiskunde, (2)12(1918), 234-270.
19. Arnold Singer, "On a Substitution Made in Solving Reciprocal Equations," Math. Mag. , 38 (1965), 212.
20. Valentino Tomelleri, Su di alcune serie della teoria del potenziale ed i polinomi di Tchebycheff e di Legendre, Rend. Ist. Lombardo sci. e letters. Sci. Mat., fis., chim. e geol., 98(1964), 361-371.
21. Problem 3691, Amer. Math. Monthly, 41(1934), 395, posed by E. P. Starke; Solution, ibid. , 43(1936), 111-112, by E. P. Starke, and note editor's remarks.

$$
\begin{gathered}
\text { [Continued from page 396.] } \\
B(t, t)=\sum_{k=0}^{t-1}\binom{t-1}{k} \frac{(-1)^{k}}{t+k}
\end{gathered}
$$

Hence $y\left(\bmod 10^{\mathrm{tn}}\right)$, defined by (8), with coefficients given by (10) and (12), is an automorphic number of tn places. By replacing $\mathrm{k}-\mathrm{t}$ by k , we get the representation (1). Further, by using identity (5),

$$
y=t\binom{2 t-1}{t} x^{t} \sum_{k=0}^{t-1} \frac{(-x)^{k}}{t+k}\binom{t-1}{k}
$$

where

$$
\begin{aligned}
\frac{1}{x} \int_{0}^{x} u^{t-1}(1-u)^{t-1} d u & =\int_{0}^{1} v^{t-1}(1-x v)^{t-1} d v \\
& =\sum_{k=0}^{t-1}\binom{t-1}{k} \frac{(-x)^{k}}{t+k}
\end{aligned}
$$

by expanding $(1-\mathrm{xv})^{\mathrm{t}-1}$ and integrating term-by-term. This result yields the representation (2).

REFERENCES

1. Vernon deGuerre and R. A. Fairbairn, "Automorphic Numbers," J. of Rec. Math., Jul. 1968.
2. Problems Section, Software Age, June 1970.
3. Donald E. Knuth, The Art of Computer Programming, Vol. II, Addison-Wesley, 1969.
