We have therefore

Now

$$
\begin{equation*}
F_{a^{k}}(x)=F_{a^{k+1}}(x)+\left(x^{2^{k+1}}+x^{u_{k+2}}\right) F_{a^{k+2}}(x) \tag{6.17}
\end{equation*}
$$

$$
B(x)=x^{2} F_{a^{2}}(x)
$$

so that $\mathrm{F}_{\mathrm{a}^{2}}(\mathrm{x})$ is rationally related to $\mathrm{A}(\mathrm{x})=\mathrm{F}_{\mathrm{a}}(\mathrm{x})$. Then by (6.17) the same is true of $\mathrm{F}_{\mathrm{a}^{2}}(\mathrm{x})$ and so on.

We may state
Theorem 6.3. For arbitrary w, the function $F_{w}(x)$ is rationally related to $A(x)$, that is, there exist polynomials $P_{w}(x), Q_{w}(x), R_{w}(x)$ such that

$$
P_{W}(x) F_{w}(x)=Q_{w}(x) A(x)+R_{w}(x)
$$

It seems plausible that $A(x)$ and $D_{1}(x)$ are not rationally related but we have been unable to prove this.

REFERENCES

1. L. Bieberbach, Lehrbuch der Funktionentheorie, Vol. 2, Lepizig and Berlin, 1931.
2. L. Carlitz, V. E. Hoggatt, Jr., and Richard Scoville, "Fibonacci Representations," Fibonacci Quarterly, Vol. 10, No. 1 (1972), pp. 1-28.
3. L. Carlitz, V. E. Hoggatt, Jr., and Richard Scoville, "Lucas Representations," Fibonacci Quarterly, Vol. 10, No. 1 (1972), pp. 29-42.
4. L. Carlitz, V. E. Hoggatt, Jr., and Richard Scoville, "Fibonacci Representations of Higher Order," Fibonacci Quarterly, Vol. 10, No. 1 (1972), pp. 43-69.
5. L. Carlitz, V. E. Hoggatt, Jr., and Richard Scoville, "Fibonacci Representations of Higher Order - II," Fibonacci Quarterly, Vol. 10, No. 1 (1972), pp. 71-80.
6. L. Carlitz, V. E. Hoggatt, Jr., and Richard Scoville, "Pellian Representations," Fibonacci Quarterly, Vol. 10, No. 5 (1972), pp. 449-488.
[Continued from page 526.]
it is clear that we have proved (5).
As for (2), we have

$$
a L_{n}-L_{n+1}=b^{n}(a-b)=b^{n} \sqrt{5}
$$

For $n \geq 4$

$$
\left|\mathrm{b}^{\mathrm{n}} \sqrt{5}\right| \leq \mathrm{b}^{4} \sqrt{5}=\frac{1}{2}(7-3 \sqrt{5}) \sqrt{5}<\frac{1}{2}
$$

REFERENCE

1. R. Anaya and J. Crump, "A Generalized Greatest Integer Function Theorem," Fibonacci Quarterly, Vol. 10 (1972), pp. 207-211.

