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1. INTRODUCTION
We consider triangular arrays (nj].) (G = ik, i =1@Q)k) and (ars) (s =1k +1
-r, r =1(1)k) andlet Tn,k) and Cn,k), respectively, denote the number of these ar-
rays in which the entries are non-negative integers subject to the conditions
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The conditions (1.1) and (1.2) are the same as MacMahon [ 3] imposed on multi-rowed parti-
tions. Rectangular arrays subject to these conditions have been considered by Carlitz and
Riordan [1].

It is easy to evaluate T(1,k) and C(1,k). Indeed, taking row sums, we find that
T(1,k) is the number of sequences jl’ s, jk with ji > ji+1 and j1 =k, It follows that
Td,k) = Zk. In the same way, we find that C(1,k) is the number of sequences jl’ cee jk

with kK+1-1i= ji = ji+1' Hence C(1,k) is the familiar Catalan number (c.f. [2])

1 2%k + 2
(1.3) CL.K) = 5 <k+1> .

It will be convenient to have an alternative description of Cln,k) and T(n,k). With
each array counted by T(n,k) we associate the nx k array M = (mij), where 0y is the
number of elements in the jth row which are greater than or equal to i. Similarly, with
each array counted by C,k), associate the nxk array B = (bij)’ where bij is the
number of elements in the jth column which are greater than or equal to i. That is, mij
= card{njtlnjt = i} and bij = card {atj}atj = i}. It then follows that the entries of the
associated array are subject to the conditions
k,

(1.4) m
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= = = -
(1.5) by = by i bij = by g by = k+1-j.
It also is not difficult to verify that the n x k arrays subject to (1.4) and (1.5) are equinum-
erous with those counted by T(n,k) and C(n,k).

Here we prove that

(1.6) T@,k) = (2kk+ 1) ,
_ ok f2k + 2 k 2k + 2
1.7) T@B,k) = 2 (k + 1)- 2 ( Kk >
as well as
(1.8) Cl,k) = det [(n : lj : f S r)] (t,s =1, «++, k) .
It is also shown that
0 -k(k+1)
5 -1

:E::C(anxn

n=0

Ak(X) - (1 -x)

where Ak(x) is a polynomial of degree %k(k - 1) with integral coefficients and which satis-
fies the symmetry condition

1k(k-1) 1

2 = =

1.9) X Ak - Ak(x) .
2. TRIANGULAR ARRAYS

We consider triangular arrays

P11%2 07 Mk

@.1) 22

and let T*(n,k) denote the number of these arrays with non-negative integral coefficients
satisfying

= => =
(2.2) Dy =0 Dy = By 54 By = DiaaLj
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We also put

n

T(n,k) = E T*(,k) .

j=0

It is immediate that T(0,k) = T*(0,k) = 1 and as observed in Section 1, it is easy to

see that T*(1,k) = 2k —~1. This can also be seen by classifying the arrays according as

ng, = 0 or 1 and noting that this implies the recurrence

T*1,k) = T*(1,k - 1) + T,k - 1) .
A simple verification of the boundary conditions is then all that is necessary to anchor the
induction.

Next let Q(myy, my, °+*, my;) denote the number of nxk arrays M = (mij)’

where the mij are subject to the conditions (1.4). It is clear from the remarks of Sectionl

that
T*(n’k) = E Q(Si’ 0%y sn) ]

where the summation extends over all n-tuples (s;, ***, s,) for which k = 81 = 8,

= 1. A more useful reformulation of these remarks is the observation that
(2.3) Th,k) = Qk +1, k + 1, re>o, k +1) ,

For the case n = 2, we find that

m-1 r-1 m-1
Q(m,r) = 1 + Z Q(s) + Z Z Q(s,t)
s=1 = st
r-1 m-1
= g1y Qlsst) »
=1 s=t

where we have used (2,3) for the case n = 1. A more convenient form of this last equation

is
m

Qm,r +1) = ZQ(s,r) .

S=r



594 TRIANGULAR ARRAYS SUBJECT TO MAC MAHON'S CONDITIONS [Dec.

It is now a simple induction to show that

Qm,r + 1) = @1 _ E @f1 _ 1) (m +jj - 1) m=r+1)

which should be compared with [1, Eq. (1.9)] . In particular, we have

Qm +1,m +1) = 220 _ @™ _q) (mj+ j)

It now follows from (2.3} that

(2.4) T*@2,k) = (21‘1: 1) .

3. THE CASE n = 3

The evaluation of T(3,k) is more complicated but leads to a simple result. Let
Qc(mn, my, Mg ) denote the numberof 3 x ¢ arrays (mi.) whose entries are non-increasing
down each column and whose positive entries are strictly decreasing along each row. Then,
according to the remarks of Section 1, we have

(3.1) T(3,k) k+1, k+1,k+1),

= Qk+2

It is not difficult to show (by induction on c) that

=Y
3.2) Qc+1(r,s,t) = Z De—Zi,c-Zj—l,c—Zk—Z ’

isj=k

where we put

r s t
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(1) (1) (59)

k
In particular, for ¢ =m =r = s = {, it follows from (3,1) that
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_ okf2k +2 k f2k + 2
(3.3) T@B,k) = 2 <k+1) -2 ( Kk ) s

_okf2k + 2 k(2k + 2 2k + 1
(3.4) T*(3,k)—2(k+1)_2( K )_( i >

It appears unlikely that this method would lead to a simple result for T(n,k) even

though (3.2) can be generalized in an obvious manner.

4, CATALAN DETERMINANTS

We consider triangular arrays

a a

1177 q1,k1 Pk
(4.1) 1 77 B2k
8

and let C(n,k) denote the number of these arrays with

=
(4.2) a3 S W 45 = 3 a1 5 = B4y, ¢
Then, as observed in Section 1, we have that C(n,k) is also the number of n x k arrays
B = (bij) subject to the conditions (1.5). Also, if we put C(]'l, SN jk) equal to the num-

ber of arrays (4.1) with Ay = js’ then we find that

(4.3) C(ji' cee, jk) = E E C(rl, cee, rk—l) s
k-1 1

.th - - s .
where the i~ summand extends over the range Tettoi = Troi = Jeoi and, for convenience,
we put T = 0.

It is an easy induction to show that (4.3) is the same as

jS +k -1
C(jl,---,jk)=det k+s - ar (rys = 1,2, »+-, k - 1) .
In particular, we find that
(4.4) C(n,k) = det [(n : E : E ; r)] (r,s =1, *++, k) .

Notice that the special case (1.3) follows from (4.4) and the identity
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k
1 2k + 2\ _ yl (K+1-1 1 2k - 2j
k+2 \k+1 j+1 k+1-j k -j :
=0

In the next place if we write (4.4) in the form

_ n+k+1-1r
(4.5) Cln,k) _det[<k+1—2r+s)] ’

then we can use this determinant to define C(n,k) for all real numbers n. According to
this definition, we find that C(n,k) is a polynomial of degree —%k(k + 1) in n and satisfies

the equation

Fk(k+1)

(4.6) C,k) = (-1) C(-k - n - 1,k) .

Hence if we put
3k (k+1)

Z akj(n;j) ’

j:

4.7) C(n,k)

then we have
3k (k+1)

-k -n+j-1
C(-k - - 1,k) = . .
( n ) z:akJ( j )

=k
Fe(s+1)
=Ty k +n
E (-1) akj( j > .
j=k

In order to summarize these results in terms of generating functions, we first put
n
Cy () =3 Cn,k)x  and note that

Fk(c+1)
C &) = E a1 - x) i1
j:
and o
i
(—1)§k(k+1)ck(x) = E C(k - n - 1,k)x"

n=0
gk(k+1)

(—1)jakj X ik @ - x)_j_1 .

j:
[Continued on page 658. ]



