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1. INTRODUCTION 

The chief object of this paper i s to announce the following: 
Conjecture. Let k and n be any integers with 0 < k < n, and 

( j ) - * A " (n - k)t 

be the ordinary binomial coefficients. Then 

*•» H(v)• (^)• (J;01 H("-)'('-)•("")! • 
The consideration of this mat ter was prompted by a resul t due to Hoggatt and Hansell 

[ 3] which is that 

«•» (";l)(i>-0(^0-(^0('°0("") • 
The six coefficients involved form a hexagonal pattern around 1 , 1 in the usual Pascal t r i -
angle display. See the diagram in [ l ] where I called (1.2) a Star of David Property. The 
new conjecture gives anew Star of David property. What is more9 I also conjecture that 
(1.1) holds for Fibonomial coefficients where nl is replaced by 

[ n ] ! = F n F n _ 1 . - « F2Fi , [ 0 ] i = 1 , 

with 

F n + 1 = F n + F n - 1 ' F» = ° ' F* = * ' 

being the ordinary Fibonacci numbers . The manner in which powers of a prime enter as 
factors of such generalized coefficients suggests that there are many other a r rays in which 
the new arithmetic Star of David property holds. We shall also exhibit some entirely novel 
pseudo-binomial coefficient a r rays where the conjecture holds. It would be of great interest 
to establish necessary and/or sufficient conditions for the new conjecture. I am certain the 
conjecture is cor rec t but hesitate to publish a proof as I believe my original proof has a flaw. 
Computational resul ts will be exhibited here as evidence. 
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2. EVIDENCE 

Table 1 below shows the situation for 21 rows of the Pascal triangle. Shown here is 

-KvM^O-fcOf-
for 0 < k < n /2 . In every case the value is identical with 

H(-o-('")-eni 
Spot checks for dozens of other values have failed to turn up any counterexample. In working 
with numerical examples, it is convenient to draw the Pascal triangle in the usual manner as 

1 1 

1 2 1 

1 3 3 1 

1 22 2-3 22 1 

1 5 2-5 2-5 5 1 

1 2- 3 ^ P f c > 2 2 . 5 3-5 2-3 1 

1 7 3*7 5-7 5-7 3-7 7 1 

but in factored form. The way in which the pr imes appear suggests both (1.1) and (1.2). Be-
cause of the recurrence relation governing formation of the binomial coefficients (and the 
same principle applies to the Fibonomial coefficients) the occurrence of prime factors forms 
a triangular pattern. Thus, if 

then 

(k) md P 1 ( k - l ) ' 

( " " ) 

where c = min (a,b). But c may be l a rger I 
Let us denote the set of coefficients 

|(v). U).(;; ;)| 
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by <Q and the set 

\(l:l)^)-(»V)\ 
by P > , or more generally, we may sometimes use this suggestive notation for the corres-
ponding sets in any general array. If we must be explicit we can write \ J , and P> , , 
to indicate the values of n and k used. Clearly, if we compute a table of g. c. d. < ^ and 
the table is symmetrical with an entry in the k spot on row n the same as the entry in the 
n - k spot, then the property (1.1) holds. This is because of the similar symmetry for the 
Pascal triangle itself. Table 1, therefore, lists g. c.d. <^1 for 0 < k < n/2 only. The 
original table was drawn up on a very large sheet of paper and is not easy to reproduce here, 

Table 1 
n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

3 

5 

1 

7 

2 

3 

5 

11 

1 

13 

7 

5 

4 

17 

3 

19 

4 

7 

14 

6 

3 

11 

11 

13 

91 

7 

4 

68 

51 

57 

.. 

42 

6 

33 

11 

143 

91 

91 

28 

68 

204 

969 

• 

66 

33 

143 

143 

13 

52 

68 

204 

3876 

k 

429 

143 

143 

26 

442 

102 

1938 

.. 

715 

286 

442 

442 

646 

[n/2] 

4862 

442 

8398 8398 

A result like (1.1) using 1. c. m. is in general false. The first simple counter-example is 

l c m < ] 3 1 = lcm W J J , h \ , (*\l = 1cm (2, 1, 6) = 6 , 
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1cm [ > 3 > 1 - lcm j ( 0
2 ) , Q . ( j ) j - lcm (!, 3, 4) = 12 . 

There a r e , however, numerous cases where the L c m . property does hold. 
Except for the first values, it is interesting to note that the sequence of middle num-

bers in Table 1, i . e . , 1, 1, 1, 5, 7, 42, 66, 429, 715, 4862, 8398, • • • , are alternately 
Catalan numbers or one-half Catalan numbers. More precisely: let n > 1. Then 

(2.1) «-K*.-1) • ( . * . ) • ( ? * ! ) } -
(2n") r f i • # • • 

We omit the proof. 

3. THE FIBONOMIAL CASE 

The corresponding result for the Fibonomial coefficients to (1.1) is true because these 
numbers satisfy a recurrence relation s imilar to that for the ordinary binomial coefficients. 
We should remark that the same may be said for the Gaussian or q-binomial coefficients. 
We omit the details of the proof. 

To illustrate the relation (1.1) for Fibonomial coefficients, we give in Table 2 some 
specimen values. The table s ta r t s with n = 6, the first row where the g. c. d. > 1 for any 
k. 

Table 2 

n 

6 

7 

8 

9 

10 

11 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

1 

1 

1 

1 

1 

3 

5 

4 

13 

7 

17 

55 

••• k ••• [n/2] 

52 

91 

119 1547 

187 1309 

Again one finds a formula for Fibonomial Catalan numbers , but it is not as simple as (2.1). 

4. PSEUDO-BINOMIAL COEFFICIENTS 

Scrutiny of the discussion above for (1.1) shows that the key to the pattern of prime 
powers l ies in the recurrence relation used. However, we may evidently dispense with the 
recurrence relation and still have (1.1). To i l lustrate , we offer the a r ray on the following 
page of pseudo-binomial coefficients. 
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1 
1 1 

1 1 1 
1 2 2 1 

1 3 2-3 3 1 
1 5 3-5 3-5 5 1 

1 7 5-7 3*5-7 5-7 7 1 
1 11 7-11 5-7-11 5-7-11 7-11 11 1 

1 13 11-13 7-11-13 5-7-11*13 7-11-13 11-13 13 1 

Here we have imposed a perfectly regular pattern of appearance of prime factors. It is easy 
to see that (1.1) must hold for the pseudo-binomial coefficients P(n,k). A few specimen rows 
from the g. c. d. triangle a re : 

5 
7 7 

11 7-11 11 
13 11-13 11-13 13 

17 13-17 11-13-17 13-17 17 

where we have tabulated the g. c. d. for 3 < k < n - 3 and 6 < n < 10. 
It is also evident that the resulting a r r ay itself possesses property (1.1)', and this may 

be seen to repeat forever. The 1. c. m. of the two sets of coefficients in (1.1) fail to be equal 
for the pseudo-binomial coefficients for k = 0 (n > 2), and for k = 2 (n = 5), k = 3 
(n = 7), k = 4 (n = 9), etc. We omit a discussion of the precise behavior of the least 
common multiples, but it is clearly a mat ter to be investigated. I have been unable to find 
an a r ray in which the g. c. d. property and 1. c m . property both hold always. Even 1. c. m. 
a r r ays are hard to come by. 

In contrast to the Pascal triangle and the Fibonomial triangle, the a r ray of pseudo-
binomial coefficients does not have the property (1.2) of Hoggatt-HanselL 

Here is still another pseudo-binomial a r r ay having the Star of David property (1.1): 

1 
1 1 

1 2 1 
1 3 3 1 

1 7 3 - 7 7 1 
1 1 7 7 1 1 

1 23 2 2-7 2 23 1 
1 52 2-52 2-52 2-52 2-52 52 1 
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One may easily extend such a triangle in an infinity of ways. 
These are the types of general a r ray suggested by our work, a r r ays in which the entry 

of pr imes occurs in carefully delineated tr iangles. The most general such triangle has not 
been written out. 

5. MULTINOMIALS 

It i s , of course , tempting to go further. In [l] , [2] , [4] will be found methods for 
finding equal products of any number of binomial and multinomial coefficients in general. 
Whenever a triangle pattern'of pr ime entry appears , one suspects that interesting g. c. d. and 
1. c. m. propert ies will hold in certain cases . Computer calculations would be very useful to 
make further conjectures, but already I have checked numerous cases and found interesting 
resu l t s . When one real izes that Scharff, Rine, and Gould [2] have found relations such as 

/ n + 2 \ / n - 3 \ / n + 3 \ / n - 2 \ (n + l \ / n \(n - l \ 
\k - ijy k )\k + l / \ k - 2 / \ k + 2 / \ k - 3 / \ k + 3 / 

/ n - 2 \ / n + 3 \ / n - 3 \ / n + l \ / n + 2 \ / n - l \ / n \ 
\k - l) \ k J \k + 1/ \k - 2) \k + 2) \k - 3/ \k + 3/ 

it becomes clear that there is much more to be investigated. When, for example, a re the 
g. c .d. f s of the above sets of seven coefficients equal? Not in general , as examples are 
easily shown to the contrary. A computer can easily generate as many tables of this sort as 
needed. We should remark that the detailed computer print-out in [2] will be deposited in 
the Fibonacci Bibliographical Center for reference. 

In [l] I pointed out that (1.2) generalizes to 

(n - a W n \ / n + n \ / n - a \ / n \ / n + a \ 
k / ^k - a^ \ k + ay y k - a y ^ k + a J ( k J 

and it is tempting to see if the g. c.d. property holds here . A simple counter-example, n = 
8, k = 3, a = 2 suffices to show that the g .c .d . Star of David property does not hold in 
general here . Again, however, abundant true examples exist. 

ADDENDUM 

Property (1.1) was first noted by me around December 1971. Since writing the present 
paper (1.1) was mentioned to Hoggatt (telephone call , August 3, 1972), and I have now heard 
from him (telephone call August 7) that he and A. P . Hillman [5] have proved conjecture (1.1) 
as well as for the Fibonomial case and for a r rays in general where certain recur rences hold, 
The method is one due to Hillman based on iteration and the recurrence . Clearly we are at 
the opening of a new chapter in the discovery of interesting arithmetic propert ies of a r r ays of 
numbers . 
[Continued on page 628. ] 


