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where Fn +m denotes the (n +m) Fibonacci number and Ln 4 denotes the (n + m)

Lucas number, many basic identities are easily deduced. From certain of these identities

and the generating functions, we obtain identities for the triples FquFr’ FquLr’ F Lqu,

and LquLr’ where p, g, and r are fixed integers.
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1 is found to be
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In a similar fashion the generating function of {Ln +m

(Any reader who is unfamiliar with the general theory of generating functions will find refer-
ences [1], [2], [3], and [4] enlightening.)

Before considering important special cases of the above results, two lemmas are given
which are proved by appropriate substitution of formulas (0).

Lemma 1. FnLn =F n € Z, the set of integers.

2n’

Lemma 2. FnLn-l + Fn-‘an = 2F2n—1’

In utilizing formulas (1) and (2) to generate basic identities, we must first evaluate the

ne Z.

formulas at specific values of m. It is sufficient for our purposes to consider the cases
m=-2, -1, 0, 1, 2, 3, 4.

SPECIAL CASES OF FORMULAS (1) AND (2)

(Let 1 -x-x%2 =A.)
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Using the fact that two series are equal if and only if the corresponding coefficients are
equal, we now find several elementary identities.

Since
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A T A A
it follows that
0 0 ]
n 2 : n 2 : n
Ln X = Fn+1 X+ Fn—l X
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Lemma 3. Ln = Fn+1 + Fn—l’ n e Z U {0}, the set of nonnegative integers.

Note from definition (0) that
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for any positive integer n.
Returning to Lemma 3, we now observe from this lemma and "definitions' (0') and (0")
that
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Hence Lemma 3 holds for all integers n.

In a similar manner the additional lemmas are found.

Lemma 4. 5F_ = L + L , n e Z.
_— n n+l n-1

Lemma 5. 2Fn+1 = Fn + Ln = Fn+2 + Fn-l’ ne Z.
Lemma 6. 2F =F -L, neZ
—_— n-1 n n

Lemma 7. Fn+3 = Fn+1 + Ln—l’ neZz.
Lemma 8. 3Fn = Ln+1 - Fn-—l’ ne Z.
Lemma 9. 3Ln+2 = Ln +Ln+4, ne Z.
Lemma 10. 3Fn+2 = Fn + Fn+4’ ne Z.
Lemma 11. 2Fn+1 = Ln+1 - Fn—z’ n e Z.
Lemma 12. Lrl + Fn = Fn+2 + Fn—l’ ne Z.

Although these results are of interest in themselves, their principal use is as lemmas
to more profound results. The reader is encouraged to consider additional special cases of
formulas (0), and then generate additional Fibonacci and Lucas identities.

The next three results are also generated from formulas (1) and (2). These fundamental
identities are essential to our development of Fibonacci and Lucas triples.

Theorem 1. Fan +F L L

n-1"m-1 -~ “n+m-1°
Proof. Let m be any fixed integer. Then

for any n,m € Z.
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by formula (2). Results (0') and (0") complete the proof.

From a development similar to the above proof, we find a companion result to Theorem

1.
Theorem 2. FnFm + Fn—lFm—l = Fn+m—1’ for any n,m € Z.
Theorem 3. Lan + Ln_le_1 = Ln+m + Ln_‘_m_2 = 5Fn+m—1’ for any n,m € Z.
Proof. Since L + L = 5F by Lemma 4, we need only consider the
— n+m n+m-2 n+m-1

first part of the identity. Let m be any fixed integer. Now
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Aided by the partial fractions technique we find the final result needed to generate the

specified Fibonacci and Lucas triples. It is the following:

( +aqx) (r +tx) _ pr+ (pt + gr)x + gtx?
A A Az
-qt . r + gt) + (pt + gr - qt)x

A AZ
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The identities are now found by convoluting series (generating functions) of the forms

(1) and (2). We begin by specifying m and s as fixed integers. Now
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and by Eq. (3) this product also equals

_Fm-lLs—l + (FmLs + Fm—lLs—l) + (FmLs—l * Fm—lLs - Fm—lLs—l )z
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by Theorem 1 and substitution of Fm-z for Fm - Fm-l .
I B Ml T S
= - — + _
m-1"s-1 A A A

by Theorem 1
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by definition of generating functions (1) and (2)
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By equating the coefficients of series (4) and (5), the first identity is deduced. It may be ex-

pressed as

n n
E From™n-k+s = Fm-1PsaFna * Z P41t n-kam+s-1
k=0 k=0

or
n

Fm—lLs.—lk-‘rwl = Z (Fk+1Ln—k+m+s-1 * Fk+an-k+s) °
k=0

Letting p=m-1, g=n+1, and r = s -1, the identity becomes
Theorem 4,
q-1
FFL =% (F _.L
P agr Lo k¥l ptgir-k-1
k=0

* Fp+k+1Lq+r—k) ?

for any integers p, g, and r.
One notes the need of definitions (0') and (0") if any of the above integers is negative.
Following the procedure given above, aided by the given lemmas, Theorems 1-3, and

definitions, two additional identities are found. The first is a result of the convolution of
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F +F X
m m-1

A
with

Ft + Ft-—
A

1X

9

and the. second is determined by the convolution of

L+ L X
m m-1

with
Ly + L 4%
A
Theorem 5.
r-1
"pfqr T Z Fpsgac Trk = Fpucs Fragk) 2
k=0
for any p,q,r € Z.
Theorem 6.
p-1
FLL, = Z GF L F ornen ~ LosertPporaic)
k=0

forany p, q, r € Z.

Theorem 7.

LLL =

p-2
p g T 5 § :(Fq+r+k+1Lp-k - Fp+r-qu+k+1) - Fp+q+r - Lp+qu+1 i

k=0

for any p, q, r € Z.
Proof. From Lemma 3, we obtain
LquLr = (Fp+1 + Fp—l )Lqu
= + .
Fp+1Lqu Fp—quLr

Now from Theorem 6, it follows that
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LquLr = E :(SFp—k+1Fq+r+k+1 - Lq+k+1Lp+r—k+1)
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5Fp+q+r+2 - 5Fp+q+r+1 * Lp+q T+l

by Lemmas 2 and 4 and Theorem 4

p-2
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k=0

Many corollaries to thelast three theorems are immediate by making substitution(s) for
p, 9, and r, respectively, in the given identities. The formulation and derivation of these

results we leave to the reader.
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