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ABSTRACT

A number theoretical conjecture of Milnor is presented, examined and the existence of
non-standard differentiable structures on (4k - 1)-spheres for integers k, 4 = k = 265,

is proved.

1. INTRODUCTION

In 1959, J. Milnor [1] proved the following theorem concerning non-standard differen-
tiable structures on (4k - 1)-spheres.
Theorem 1. If r is an integer, such that k/3 < r = k/2, then there exists a differ-

entiable manifold M, homeomorphic to S4k_1 with A(M) = srsk—rN/ Sy (mod 1), where
S = 22k(22k_:l - 1)Bk /(2k)!, all of the prime factors of the integer N are less than 2(k -
r), B, is the kth Bernoulli number in the sequence B; = 1/6, By = 1/30, By = 1/42,

k
By, = 1/30, .-+, and 2 is an invariant associated with the manifold M.

Milnor presents an algorithm based on Theorem 1, proves structures exist for k = 2,
4, 5, 6, 7, 8, conjectures that Theorem 1 implies the existence of these structures for k>
3, and states that he has verified the conjecture for k < 15. He points out that for k =1
and k = 3 no integers r existin the interval (k/3, k/2] and that for k = 1, two differ-
entiable homeomorphic 3-manifolds are diffeomorphic.

The Milnor algorithm will be described by considering the first seven cases. In each
case an actual lower bound will be calculated for the number of said structures; to calculate
this bound we consider the denominator of the reduced fraction and drop all prime factors
less than 2(k - 1).

L. k =r, r =2,

‘(2)(23 - 1)2B: /2" - 1)B, = (73/3)(1/127), 1b = 127.

2. k=6, r=3.

('Ef )(23 - 1)(25 - 1)ByBy /(2° - 1B = (11/5)(31/73), b = 73.

*Research supported in part by an NSF Summer Teaching Fellow Grant, also by NSF grant
GP-13708, and by the BYU Computer Center (for 20 consecutive hours of computation time!).
Copies of the tables referred to in the text may be obtained from the writer at the address
listed in the current Combined Membership List of the AMS.
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(162> @5 - 1)2BE /(2! - 1)Bg = (2-5-11+13)(312/23-89-691) ,

1b = 23-89:691 .

(13) (2% - 1)@7 - 1)BsB, /(28 - 1)By = (11-13/2-5.7)(31.127/8191) ,

1b = 8191.

(1;;)(25 - 1)(2° - 1)B3Bs /(2 - 1)By = (2%.52.13.17/3)(73/151.3617) ,

1b = 151-3617 .

(15 )(z7 - 1)(2° - 1)ByB; /(217 - 1)By = (2-3-72-13-17-19)/(73-127/43867-131071) ,

1b = 43867-131071.

(280)(27 - 1)@ - 1)BBg /(2Y - 1)Byy = (11-17-19/7)(23-89+127/283-617-524287) ,

1b = 283-617-524287 .

(ig) @° - 1)2B2 /(218 - 1)Byy = (2-58-72.13-17.19/3)(732/283-617-524287) ,

1b = 283-617-524287 .

(16)(27 _ 1)?B /(215 - 1)By = (3-5-11-13.17/7)(127%/31.151+3617) ,

1b = 31.151.3617 .
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There will be [k/2] - [k/3] integers in the interval (k/3, k/2] and one may choose
the largest of the lower bounds. We now restate the positive outcome of the algorithm in the

form of the following

Conjecture 1. Let r be an integer, r & /3, k/2], k = 3,
2k\ ,2r-1 2k-2r-1 2k-1 _ _
(Zk) (2 - 1)@ - l)Ber_r /@2 - 1)Bk = a/b, (a,b) =1,

then there exists a prime number p, p = 2(k - r), such that p divides b.

This purely number theoretic conjecture implies the existence of more than 2(k - r)
non-standard differentiable structures for S4k_1, the (4k - 1)-dimensional sphere. Con-
jecture 1 has, aside from its aesthetic number theoretical interest, the additional signifi-
cance of important topological consequences, and is one more example of the ubiquitous na-

ture of the Bernoulli numbers.

2. REPRESENTATION STRUCTURE OF THE BERNOULLI NUMBERS

Although the Bernoulli numbers have been objects of published mathematical thought
for over two centuries, in some respects, embarrassingly little is known about them. We
shall present the features of these numbers useful to us in examining Conjecture 1.

As a typical beginning point we write [2]

o]
(o)) x@e* - 1) = Z bkxk/kz
k=0
and since b, = 1, by = -1/2, and x/(€® - 1) + x/2 is an even function, we write
= k-1 =
bZk = (-1) Bk and b2k+1 = 0, k= 1.
We have
o0
@ 1 - (1/2) cot (x/2) = 3 Bx>/(2kt
k=1

and by the double series theorem [3], we see that

®) B, = 2L@E/ @0
where
§(2k) = Z n_2k )

n=1
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the Dirichlet series usually referred to as the even zeta function.

to (1) is the umbral recursion [4].

) b + DK - b =

which reduces to

k+1 B
(5) }: . b=

Equation (1) is the reciprocal of

0, b0=1,

o0
3 &£/k + 11
k=0
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An equivalent definition

and an expression for the bk may be written with symmetric functions of the coefficients of
the reciprocal of (1). We may rather write [5], [6]

o0 o0
(6) x/E - 1) = Z (1™ Z £/ + 1)
m=0 k=1

so that [7]

(7

2k
B = 1Y o™ E( m
m=1

ag, **7, Ak

a
x(1/28.3%2 000 (2k + 1) 2K

where the sum is over the partitions of

2k

2k, }: ai = m,

i=1

(0% )"

m —
((a;a), e (&R )

m!/atbict - -

m! /@) -

@),

2k
)((1;a1)s cry (2k;a2k))
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and there will be p(2k) terms [8]. A variantof (7) is

(8) (-)k_lBk = -(1/2k + 1) + Z ()™ TT pOPsks 24,2, 25k)
p<2k

where the product is over all prime numbers less than 2k, the functions §(p, k, aj, *-*,
azk) are all integers and the sum is over all the partitions of 2k but one.

The calculation of Bernoulli numbers has been a lively subject [9], and there exist
several tables of these numbers. [The most massive is D. Knuty, MTAC, Unpublished
Mathematical Tables File. The caretaker of this file, J. W. Wrench, has informed us that
kg for k= 1(1)250 one can obtain the
exact values of only the first 159 Bernoulli numbers.] To facilitate the computation of

from Knuth's manuscript of 1270D values of 10

Bernoulli and related numbers, Lehmer generalized a process of Kronecker to produce

lacunary recurrences of which the following are typical [10].

[m/2]
© > <-)*zm‘2“Bm_2A( 2 22) = 02 42,
A=0

[m/2]
10) Z: Bm—zx(zz&l::)((‘)hzthﬂ + 1) _ ((m + 2)/2)((_)|:1n/2]2m+1 +1),
>0

bm/3] 2 3 ( 2 3)/6 if 3k -1
m + _ y-@2m + , if m=23k-1,
(11) 2 Bm—SA(G?\ + 3> = g @m + 3)/3. otherwise ,
A=0
gy [(+1)/4] [m/2]
2m + 4} ;m+1-2[(m+1)/4]-2x _ m/2
a2 3 By (sx + 4 ) 2 Rz = (m + 2y
=0
where
M = -34Mm - M and m_ = 2, 0, 3, 10, 14, -12, -99, -338 ,
n n-4 n-8 n
for n =0, 1, 2, 3, 4, 5, 6, 7, respectively.
(13)
[m/6]
T B am+6 ) o 6xz) | (m+ 373, + ) [m0/2 ]2y
m-6A\12\ + 6 6A-+2

=0 if m # 2(3);
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or ~(m + 9/6)® ., + olm/2]miz - (@m+1)/3)5
if m = 23,
where
B o= -27028 o - B Lo
and

?Bn =1, 5, 26, 97, 265, 362, -1351, -13775, -70226, -262087, -716035, -978122,
for n=20,1, 2, 3, 4, 5, 6, 7, 8, 9,-10, 11, respectively.

The point of creating lacunary recurrences is to avoid dealing with all the Br’ say
r <k, to calculate Bk' An example of a recursion relation which is not precisely lacunary
yet satisfies this last condition is

(14)
[k/2]
B, = (k/z)( 2 - f) +k (215) ¥ (—)rBr(zi)(l/(Zk _a)+ 2, BB
r=0 0=r,s=[k/2]

2k
X(Zr, 2s, 2k - 2r, 2k - 25)(1/(2k -2 -1)

which can be proved [11] by repeated integration of the Fourier series for (= - x)/2 and then
using Parseval's Theorem on the result.

From (2) above, we have the identity

(15) (d/dx) (x(l - (x/2) cot (x/2))) = x%/4 + (1 - (x/2) cot (x/2))2 .
Hence, we extract
(2] (r) [ 2k
_ g(r) (2
(16) @k + DB = B~ 2 <2r) BB . »
r=1

where

I

() = 1 if r < [k/2] or r = [k/2], k odd,
8 =0 if r [k/2], k even.

We observe that this '"quasi-convolution'' recurrence involves only positive numbers; hence,

beginning with
(17) By = 1/2-3,

(18) By = 1/2:35,



1973] DIFFERENTIABLE STRUCTURES ON (4k - 1)-SPHERES 7

(19) By = 1/2:37,
(20) By = (1/2:3%5)(22.5 + 7) = 1/2:3:5,
(21) Bs = (1/2-3%-11)(2%.5 + 7 + 2:32) = (5/2-3-11) ,

By = (1/2:33%-5-7-13)(23.52.7 + 2:5:7% + 22:5.7.11 + 72.11 + 22.32.5.7

(22) + 2:80.5.11) = 691/(2-3-5:7-13) ,

By = (1/2:35-52)(23-5%.7 + 2:5:7% + 22.3%.5.7 + 2%.5.7.11
(23) + 7211 + 2:3%5-11 + 22.5-7-13 + 7213 + 2.3%.7.13

+ 22.5.11.13 + 7.11-13) = 7/(2:3) ,

Bg = (1/2-3%5.17)(25%3.5%.7 + 23.3.5.72 + 24.33.5.7
+24.3.5:7-11 + 22.3-7%-11 + 23-33-5:11 + 24.3-5-7-13
+ 22.3.72.13 + 23.33.7.13 + 24.3.5.11.13 + 22.3.7.11-13
(24) + 25.32.520.7 + 23.32.5.72 + 24.345.7 + 24.32.5.7-11
+ 22.32.72.11 + 23.345.11 + 25.3%.5.13 + 23.32.7.13
+ 243413 + 2452.11.13 + 22.5.7-11-13 + 22.5.7-11-13

+ 72.11.13) = 3617/(2:3-5-17) .

By induction, we express the Bernoulli number Bk by

c(k)
(25) B, = ]—[ p2 sk Z 'l_l'pb(p,r,k)

p<2k+2 r=1 p<2k

Where the products are over the primes less than 2k +2 and 2k, respectively, a(p,k) is
an integer (possibly negative) and b(p,r,k) is a non-negative integer. The number c(k) of

terms in the sum clearly possesses the recurrence

[k/2]
(26) ck) = Z c(r)ck - 1),

r=1

with initial condition c(1) = 1. Kishore [12], [13] has used this technique to develop anal-
ogous structure theorems for Rayleigh functions [14], [15].
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3. DIVISIBILITY STRUCTURE OF THE BERNOULLI NUMBERS

We first cite the well-known [16], [17]
Theorem 2. (Von Staudt-Clausen). If Bk = Pk /Qk are the Bernoulli numbers for
k=1,2, 3, -+ and (Pk’ Qk) =1, then

(27) Q = T—i- P,

p—]l 2k

where the product is over all primes whose totients divide 2k.

This theorem completely characterizes the Bernoulli denominators; hence, questions
of divisibility center around the numerators Pk' A sufficient condition on divisors of Pk
is given in the following [16, p. 261]

Theorem 3. If p®| 2k, p”" f2k, p - 1fk, then p‘"|Pk )

The proof of this theorem follows from a congruence of Voronoi

N-1
- 1)Pk = (—)k_lzk aZk_le Z s2k_1 [sa/N] (mod N) ,
s=1

(28) @2k

where (a,N) = 1 and N is any integer greater than one. Clearly if p2|2k, (a2k

-1)Pp_=
0 (mod p ) and we may select a to be a primitive root g of p® (i.e., if @ =1, g l;al—
ways exists: if w > 1 and gp_l £ 1 (modp?), take a = g; if gp_l =1 (modp?), take
a =g+p).

Equation (28) is a type of congruence used recently [18], [19] to investigate certain
divisors of Bernoulli numerators. Specifically, those primes p such that

(29) p) PPy .- P (0-3)/2

are called regular primes and Kummer [20] proved that for these primes, Fermat's inequal-

p

ity, x° + yp # zP, holds for all nonzero integers x, y and z. We list a number of con-

gruences of the Voronoi type.

(30) 2 s @B @ P (fp /ak @oedp)
p/6<s<p/4

with [16, p. 268], p >3, p - 1*21{

(31) Z 21, Z s2k-1 = (—)k(6p_2k S P 1)Bk/4k (mod p)
p/6<s<p/5 p/3<s<2p/5
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with [19, p. 27], p > 7, 2k <p-1.

(32) > o = R L P DB ek Gmod p)
p/6<s<p/3

with [21], p> 7, 2k <p -1,

(p-1)/2

2k 2k-1
(33) E © - 2r)"" = p2 By (mod p3)
r=1

with [22], 2k # 2 (mod (p - 1)).
(34) PPV 1yl 2 0 (mod pi Y
with [23], p an odd prime, a~ 0, j~ 0, a+j <p- L

From reflections on the divisibility properties of the binomial coefficients, it has been
shown [24] that

(35) 2B = 1 (mod 2™0), for k>1, 22k, 2"k .
Also [25],

(36) ZBk =1 (mod 4), k >1,

and [26],

(37) B, =1- (1/p) (mod pr), for p>2, (- l)pr‘ 2k, pr+1l/2k.
A more elaborate result [2] is

(38) 30By = 1+ GOO(k ; 1) {mod 27000) .

The last depends upon special identities such as

X -1 554
(e

e - 1) - - 1)"1 = (cosh (x/2) + cosh (3x/2)) cosh (5x/2) .

4. APPROACHES TO CONJECTURE 1

Milnor [1, p. 966] asked whether or not
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2k-1

(39) 8(2k)1/(2 - 1)Bk £ 0 (mod 1) .

That this is true for k > 2 is clear by remarking [27] that 22k_1 -1 possesses a primi-
tive divisor ¢, such that q = 1 (mod 2k - 2).

In particular, q > 2k +1 and ¢ must occur in the denominator of the fraction in (39).
We naturally ask whether or not a prime ¢ > 2k + 1 always exists such that

toak-1 ; 2k -2r-1
q2 -1 and qj/zzr 1_q, q}'z Zr-l _ 4, q}'Br, q}'Bk_r.

with k/3 < r < k/2. This suggests
Lemma 1. If ql ZZk_l ~ 1 is primitive and regular, then Conjecture 1 is true for k.
We consider r =k/2 or (-1)/2, k >3. Since q > 2k +1 and qé’Bi for i<
@ - 1)/2, q%’Bi‘, if k is even and q}'Ber_r if k isodd. Also[28], of2! -1, j < 2k-1.
Another natural question is, since Fermat's Last Theorem is true for [29] primes of the

form 22 - 1, are these numbers and their large factors also regular? Alas,
233|B42, 233| 22 _ 1,

As an example of the theorem, k = 15, 2k -1 = 29; 1103|229 -1, yet 1103 is regular;
the nearest irregular primes are 971 and 1061. Also 3391| Biites 3391| Bypgy and 3391| 2113
-1, but 3391}’B23B29 so that irregular primes may be primitive and still satisfy conjecture
1. Similarly for 2631 2131 _ 1 and 263|Bg. These remarks handle cases k = 57, 66. The
number of primitive primes is infinite. so is the number of irregular primes [30] ; Kummer
conjectured that the number of regular primes is infinite. Present tables show that known
regular primes are more numerous than irregular primes. The intersection of these primi-
tive and regular prime sets, though nonempty, is unknown. It is interesting to note in this
connection that

2k-1 2k - 1Y ,2k-2r-1 ar
(40) 297 1= Y (2r N 1) @ - )™ - B, /r,

r=1

which for 2k - 1 prime is a relation between Mersenne [31] numbers and Bernoulli numbers.
We might enjoy having (241{_1 -1, Bk) = 1, for the case of the (8k - 1)-sphere; but
(227 -1, By) = (@1 -1, By) = 2% - 1,

and a similar thing occurs whenever 3! 4k -1, 7|2k; likewise, if 5/4k -1, 31|2k, e.g.,
(2895~ 1, Byyy) 231 .
Another approach to (39) is to seek a large (greater than 2k) prime factor of B, and to

k
apply its existence to Conjecture 1. However, there does not appear to be in the literature
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any theorem (other than a direct calculation [32] proving the existence of a large prime di-
visor of B. Equation (25) suggests that if the b(p, r, k) numbers behave appropriately,
the sum in (25) would be the source of large factors; for the first few cases the sum has a
number of small factors (i. e., equations (17)-(24)). A very general and related problem is

whether or not sums of the type

c(k)
(1) :E: T'T pﬂ(p,r,k)
r=1 p<2k

with the function n(p, r, k) behaving similarly to the b(p, r, k) possess large factors. It
is known 33 that for sums of type (41) where N(p, r, k) > b(p, r, k) (inequality in a rough
distribution sense of the density of primes being greater in one than the other) large factors
arise. One must proceed with considerable care because of the copious factors [34] of a

sum such as

n nk - 1) = nk
(4:2) Z(ah.“’ak)(n_al’.“’n_ak)—(n’.."n> ’

where the sum is over the partitions

k
Zai=n .
i=1

Rather than digging a prime out of Pk’ we recognize the obvious

Lemma 2. For m,n arbitrary positive integers, such that m/n < 1, then there ex-
ists a prime p such that pIn/(m,n) and plm/(m,n).

We write for integers r € (k/3, k/2] , k > 3,

2k 2r-1 2k 2r-1 2k-1

(43) <2r> @ - D@ - )B_ B, /(2 - DB

2k 2r-1 2k-2r-1 2k-1
(44) = (Zr) (Qk /Qer_r)(Z — 1)@ — 1)PrPk—r /(2 l)Pk

_ (2,&) H0 -6, 1)-6, k), 2r-1 ) 2k-2r-1 PP,
t p<2k+2
(45) /
M, M! N, N! ,

where kMk k™k
(46) 6p,k) =1 if (p - 1)' 2k and zero otherwise
with | I

2k-1 k] .
47) 2 -1 = MkM' s Mk = p'<2k p\y(p, ), Mk largest possible,
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and

(48) P =NN, N =] | p?®:K) N largest possible.
k k k k
p<2k
Therefore, we have the following
Lemma 3. If
(49) M, < o0.25( %) a /a.q
kK k : \2r k/ r k-1

for some integer r € (k/3, k/2], then Conjecture 1 is true.
From (3),

-1
(50) BB, /B, = (2‘;) 20@2r){(2k - 21)/L(2K) < % (g‘;)

In fact, [35], for k even,

(51) cw/E) = 3 0 [k

n=1

for v{n) equal to the number of distinct prime factors of n.

By hypothesis

2r-1 2k-2r-1

m/n = (2 - 1)@

- )PP /Mi{Ni{

(52) -1
< 4M N (2k> QQ _/Q <1
k™ 'k \ 2r rk-r’ %k °

But n has no prime factors less than 2k and hence none lessthan 2(k - r) (whether 2k +1
is prime or not, n has no factors less than 2k + 2), so by Lemma 2 there exists some
prime greater than 2k, which provides a non-trivial bound for Conjecture 1. Also, if 2k -
1 is prime, Mg = 1; in general, for say n = 2k - 1, an easily refined inequality is Mk
<2 A0)+20-0970) ) Bulerts totient function.

Since for relatively small k, discovery of a large prime divisor of Pk could require
more than 10%8 centuries with our present technology, Lemma 3 presents itself as a most
opportune calculational device. Using this lemma we have shown Conjecture 3 to be true for
integers k € (3, 265]. The details of this calculation, which appear in the appended tables,
materially suggest the truth of the hypothesis of Lemma 3. These calculations make use of
congruences of type (28), which gives necessary conditions for all divisors of Pk’ conditions
which depend upon properties of the sum
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p¥-1

(53) E g2k-1 [sa/p“’] ! (mod p%) ,

s=1

for a some primitive root of p (a complication can arise here because p = 3511, which
satisfies Zp_l = 1 (mod p%), has a Kummer irregularity of 2).

Of (53), the tables present empirical evidence, the most complete to date; the more
valuable conceptual information in the form of an upper bound inequality on Nk’ for exam-
ple, would be welcome knowledge at this point.
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