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The object of this paper is to discuss the problem [3 ] of finding all triangle shaving in-
tegral a rea and consecutive integral sides. The c lass of all such triangles is determined 
uniquely by a simple recurrent sequence. We also examine other interesting sequences a s -
sociated with the triangles. Such triangles have been of interest since the time of Heron of 
Alexandria and the reader is referred to Dickson1 s monumental history [ 9 , Vol. 2, Chapter 
5 J for a detailed account of this and s imilar problems up to 1920. 

The area , K, of a triangle having sides a, b, c must satisfy the formula of Heron 

K2 = s(s - a)(s - b)(s - c) , 
where 

s = (a + b + c)/2 . 

Letting the sides of our triangle be u - 1, u, u + 1, we have s = 3u/2 and the equation 

(1) K2 = 3 u 2 ( u 2 - 4 ) . u; ^ 1 6 

Evidently u must be even; for if u were odd then both u2 and u2 - 4 would be odd 
and 16 could not divide into the numerator. In order for 3N to be a perfect square it i s 
necessary that N be a multiple of 3. However, u2 cannot be a multiple of 3 without also 
being a multiple of 9, and so the only way to account for the factor 3 in the numerator i s 
to impose the Diophantine equation u2 - 4 = 3v2, or 

(2) u2 - 3v2 = 4 . 

All solutions to the problem will be determined by solving this equation for u, making c e r -
tain that we obtain even values of u. 

Equation (2) is of the general c lass u2 - Dv2 = 4 and a complete solution of this equa-
tion may be found inLeVeque [ 5 , Vol. 1, p. 145], The substance of the solution, as it applies 
to our work is that if Uj + Vfs/D is the minimal positive solution of u2 - Dv2 = 4, D ^ 
square, D > 0, then the general solution for positive u ,v is given by the symbolic formula 

/ui + ViVBY1 

A—2—) -u + vVB" = 2 \ — 5 } , (n = 0, 1, 2, • • • ) 

27 
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where v and u are found by expanding the right-hand side by the binomial theorem and 
equating radical and non-radical pa r t s . It i s easily seen that the minimal positive solution 
of (2) is 4 + 2V3 so that the general solution is given by 

u + vy^ = 2(2 + V3) n = 2 Xl (k) ^ ^ > k 

k=0 

[ n / 2 ] [ (n - l ) / 2 l 

-£(!)**++*» Z Ua
+1>n-2k-v 

Thus we have 

2 
k=0 x ' k=0 

[n/2] 
u = 2 n + 1 T ( 0 l ) (3/4)k 

2-d \2kJ 
k=0 

However, it is easy to split up the binomial expansion and obtain the well-known formula 

Z ( 2 k ) x k = !{<1+VS>n-Mi-v^)n} . 
k=0 

whence we have 

(3) u = u n = (2 + \ / 3 ) n + (2 - \ / 3 ) n , (n = 0, 1, 2, • • • ) . 

It is of interest to point out that we could also write 

U) u - ( H - V 3 > 2 n - M l - V 3 ) 2 n 

n 2 n 

but the former relation is eas ier to use in pract ice. We also remark that i t is easy to prove 
by induction that u as determined by (3) i s indeed even. A shorter derivation of (3) is to 
note that 

2u = (u + v \ /3) + u - v \ /3) = 2(2 + \ / 3 ) n + 2(2 - %/3)n . 

Cf. the solution given by E. P . Starke [i], 
We also have the recurrence relation 
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u ^ 0 = 4u ,- - u , n+2 n+1 n9 (u0 = 2 , 1 1 ! = 4) 

since this recurrence is associated with the character is t ic equation 

«* = 4x - 1 

whose roots are 2 +\/3, 2 -yjz. The recurrence relation allows us to compute a short 
table of values of u, as follows: 

u = u 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

2 

4 

14 

52 

194 

724 

2702 

10084 

37634 

140452 

524174 

1956244 

7300802 

27246964 

101687054 

379501252 

1416317954 

5285770564 

19726764302 

73621286644 

275758382274 

Actually our problem is an old one, rational triangles having always been of interest . 
A solution of the form (3) was given, for example, by Reinhold Hoppe in 1880 [ 4 ] , Also, Cf. 
solutions in [ 7 ] , [ 8 ] , 

The first six tr iangles, together with their a r ea s , a re : 

1, 
35 
13, 
51, 
193, 
723f 

2, 
4, 
14, 
52, 
194, 
724, 

3, 
5, 
15, 
53, 
195, 
725, 

0 
6 
84 

1170 
16296 
228144 
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The triangle 3, 4, 5 is the only right triangle in the sequence because (u - I)2 + u2 = (u + l)2 

implies u(u - 4) = 0 which has only the one non-trivial solution. The triangle 13, 14, 15 
has been used widely in the teaching of geometry. In fact the wri ter f irst became aware of 
this example during a course in college where the triangle was used as a standard reference 
triangle. Such a triangle has rational values for i ts major constants, as we shall see he re , 
and so makes it possible to have problems with ?nice! answers. For example, in this case 
the sines of the three angles in the triangle are 4 /5 , 12/13, and 56/65. The radii of the e s -
scribed circle are 21/2, 14, and 12. The altitudes are 168/13, 12, and 168/15. Cf. [7 ] . 

It i s easy to conjecture that the a rea K = K satisfies the recurrence relation 

(6) K n + 2 = 14Kn + 1 - K n , <K0 = 0. K l = 6) . 

If this were t rue , we could find an explicit formula for K since the character is t ic equation 
for (6) is x2 - 14x + 1 = 0, whose roots are 7 ± 4 \ /3 . For suitable constants A ,B we 
should then have 

Kn = A (7 + 4v/3)n + B(7 - 4 / 3 ) n . 

F rom the initial values, A,B are easily determined and we find that 

which simplifies to 

(7) 

Kn = ^ 1(7 + 4V3)n - (7 - 4V^)n( 

Kn = ^ j(2 + V3)2n - (2 - V3)2nj 

According to the review in the Fortschri t te [4] i t was in this form that Hoppe found the area . 
Now (7) follows from (6) which we conjectured from tabular values of K. However it is 

easy to show that K given by (7) satisfies (6). Thus we shall prove (6) by proving (7) in a 
novel way, as follows. 

By (1) we have, for any triangle T , 

16K2 = 3u2(u2 - 4) , n nv n 

and it i s easy to see that (3) implies 

(8) u2 = u0 + 2 , 
w n 2n 
whence 

16K2 = 3(u0 + 2)(u0 - 2) = 3(u2 - 4) = 3(11. - 2) , n N 2n 2n x 2n 4n 
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so that we have the formula 

(9) K» = 4 (u,„ - 2) . 
Thus 

n 16 v"4n 

- V5 i 
(10) K n = * £ (U 4 n - «)i 

However a short calculation shows that in fact 

(2 + V 3 ) 2 n - (2 - v ^ ) 2 n f 2 = (2 + V^) 4 1 1 + (2 - V 3 ) 4 n - 2 

= U4n " 2 • 

whence formula (10) gives (7) which we wanted to prove. 
We remark that relation (8) is very useful in checking a table of u and was used for 

this purpose here to be certain of the value of U2Q. 
The radius , r , of the inscribed circle of any triangle is given by the formula K = r s . 

In the case at hand this gives 

T^2 2 A U2 - 4 U 0 - 2 
.2 - T.2 - K - - u - 4 _ n _ 2n (11) r2 = r n o 12 12 12 

a 

and it is easy to prove that 

(12) r n + 2 = 4 r n + 1 - rn > (r, = 0, n = 1) 

so that every triangle T has an integral inradius. The first few values of r are 0, 1, 4, 
15, 56, 209, 780, 2911, 10864, • • • . 

Noting that recurrence relation (12) is the same as relation (5) we suspect that there 
are other intimate relations between u and r* Indeed, the theory of continued fractions 
provides us an interesting result . Some very handy information on continued fractions is 
given by Davenport [ 2 ] and especially the table on page 105. F i r s t of al l , our original equa-
tion (2) may be transformed as follows. Since u is even, say u = 2x, we have 4x2 - 3y2 = 
4, whence v is even, say v = 2y, and so the equation can be written as 

(13) x2 - 3y2 = 1 

which suggests that we examine the familiar continued fraction expansion for V 3 . Indeed, 

v 1 + 2 + 1 + 2+ 1+ 2+ 

and tltie f irst few convergents are 
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1 2 5 7 1 9 2 6 ^ 7 1 9 7 
1 ' 1 } 3 ! 4 ' 11 } 15 ' 4 1 ' 56 ' " ' ' 

The interesting point here is that every other numerator is one-half u , while every other 
denominator is precisely r . By means of some simple transformations we can bring out 
the relation more strikingly. In fact the continued fraction 

l i 4 ) u l 1+ 3 - 4- 4- 4 - 4 - 4 - 4- 4 - 4- . . . 

has successive convergents 

1. 2 7 26 97 _362̂  1351 
1 ' 1 J 4 ' 15 ' 56 ' 209 ' 780 J 

so that each numerator is -|u and each denominator i s r . It can be shown that the continued 
fraction (14) converges to \/3„ Let us show that 4 u / r also tends to \ / 3 . We have, by (11) 

1 u2
 0 u2

 0 1 
T — = 3 . = 3 _ • 3 a s n—> oo » 
4 r2 u2 - 4 1 - ± 

so that we can say that our general T has the interesting property that 

u 
(15) l im — = 2\/3 

n-* oo r v 

n 

It is interesting to recall Heron's formula (iterative) for the square root of 3 

5a + 9 
a. = n 

n+1 3a + 5 ' n 

Starting with aj[ = 5/3 we find the successive approximations 

5 26 265 1351 
3 5 15 9 153 ' 780 

These approximations, especially the value 1351/780, a re of historical in te res t 
One may find fori 

calling that [ l , p. 12] 
One may find formulas for the radii of the escribed c i rc les for the c lass T by r e -

r s = (s - a)r = (s - b)r, = (s - c)r a D c 
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Fur ther interesting relations follow from the two formulas 

(16) r + r, + r = r + 4R, I = - 1 + J L + -L , 
a b c r r r, r 

a b c 

where R = radius of the c i rcumcir le . Also we recall that r = (s - a) tan | A , with other 
s imilar formulas. 

Thus we have 

(17) r2 = 3 2 (u_^J\ 
u 4 U \u + 2 / 

(18) r2 = | (u2 - 4) , 
whence by (11), r, = 3r , 
(19) 

fcb 4 

r2 = 3 2 (}L±2\ 
c 4 U i u - 2 I 

The radii of the three escribed circ les are easily calculated and the first few values are as 
follows^ 

<on\ n 9 2 1 1 3 ° H64 6878 50795 
W) r

a
: U j Z j T s T" J "T" 9 TT™ s — l 3 ~ s e s e 

(21) r, : 0, 3, 12, 45, 168, 627, 2340, 

(22) r ... 6 14 221 ^79 U946 

Relations (16) become 

(23) JL + A = ± 
{A6) r r 3r s 

a c 
and 

6r2 + 2 (24) r + r = 4R - 2r 
c r 

the last step following because of the fact that we shall find R = 2r + l / 2 r . 
As a simple example of the check afforded by (23), we have (n = 5] 

19 11 = 19 11 192 + 3-112 

11946 6878 2-3-1M81 2-19-181 2-3-11.19-181 

361 + 363 2 2 = _2_ 
2-3.1M9-181 3-1M9 3(209) 3r 
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One discerns a Pellian equation in this calculation also. 
We may combine (23) and (24) to obtain a product formula, which is 

(25) r r = 9r2 + 3 . 
a c 

The equation 

x2 - (r + r )x + r r = 0 a c ' a c 

has for roots the radii r , r , and when we substitute into this equation by means of (24) 
and (25), we have the equation 

rx2 - (6r2 + 2)x + 9r3 + 3r = 0 . 

Solving this by the quadratic formula, we obtain the novel formulas 

(26) r = 3 r 2 + 1 - V 3 r 2 t l . 
a r 

and 

(27) r = 3 r 2 + 1 + V 3 r 2 + 1 
c r 

which are ra ther elegant resul t s , especially since 3r2 + 1 is a perfect square. 
We turn now to the angles of our triangles. From the functional relations 

(28) 2K = ab sin C = be sin A = ca sin B , 

we find (by means of (1)) 

(29) sin2 A = | u 2 " 4 , 
4 (u + l)2 

(30) sin'5 B = ^ 3 u2(u2 - 4) 
4 (u2 - l)2 

(31) sin2 C = | u 2 " 4 . 
4 (u - l )2 

Letting n —* oo, each of these tends to 3/4. This agrees with the fact that in an equi-
lateral triangle the three sines would be each V"3/2. Of course, our special triangle T b e -
haves at oo as an equilateral triangle insofar as angular measurements are concerned, but 
never becomes truly an equilateral triangle because the sides never become equal. We may 
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il lustrate this behavior in another way. It is well known that the square of the distance be-
tween the circumcenter and incenter in any triangle is R(R - 2r). Since, as we have r e -
marked, it can be shown in our case that R « 2r + l / 2 r the number in question has the 
value R/2r . It is also known that R J> 2r in any case. However, R - 2r = l / 2 r which 
can be made as small as we wish by choosing n sufficiently large. (It follows from (12) that 
r is an increasing sequence.) Thus we have 

(32) lim (R - 2r ) = 0 
n —»oo n n 

and 
R 

(33) lim - J l = i . 
n -> oo 2 r n 

It follows then that the distance between circumcenter and incenter tends to 1. Only if 
these two points come together can we speak truly of an equilateral triangle. Of course , in a 
finite triangle, with R fixed say, then as 2r approaches R, R(R - 2r) tends to zero . In 
our case , however (R - 2r) and R increase at the same ra te , i . e . , n-*oo. The reader 
will find other peculiarit ies of T^ • 

Let us agree to write ] P - Q j for the distance between points P and Q. Let N = 
circumcenter; N = orthocenter; I = incenter; G = centroid; M = Nine-point center; A, 
B, C = ver t ices . Then we have the following known distance relationships for an arb i t ra ry 
triangle: 

N - H|2 = 9R2 - (a2 + b2 + e2) = 9 |N - G[2 = I |G - H|2 ; 

I = H | 2 = 4R2 + 2r2 - £(a2 + b2 + c2) 

| I - N | 2 = R(R - 2r) ; 

I - A | • | l - B | • | I - c | = 4r2R ; 

G - H = 2 G - N ; 

|M - N| = |M - H| = £-|N - H| . 

In our special triangles we also have the following: 

(34) ab + be + ca = 3u2 - 1 = 3u2 - 1 = 3un + 5 v ' n 2n 
and 

(35) a2 + b2 + c2 = 3u2 + 2 = 3u2 n + 8 = 36r2 + 14 
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Thus we have 

- H | » = 9 ( 2 r + ^ ) 2 -(36) | N - H|2 = 9 [ 2 r + Tf- J - 36r2 - 14 = 4 + — , 
4r2 

and since r increases steadily with n we see that for T the circumcenter and orthocenter 
will be two units a p a r t 

Moreover, 

| I - H|2 = 4(2r + l /2 r ) 2 + 2r2 - -|(36r2 + 14) 

= 1 - 1/r2 

whence in T ^ the incenter and orthocenter a re also one unit apart. 
It i s then extremely simple to draw the Euler line for T ^ : 

N G I = M H 

The Euler line from N to H is two units long and the incenter l ies on it and in fact coin-
cides with the Nine-Point center. This then gives some idea of the behavior of T^ . 

In Figure 1 is shown the standard location of the common points in an arb i t rary finite 
triangle. The Nine-point circle has quite a history, having been studied as long ago as 1804. 
It was first called n le cercle des neuf points' ' by Terquem in 1842 in Vol. 1 of the journal 
Nouvelles Annales de Mathematiques. The circle has many properties; it passes through the 
midpoints of the sides and the feet of the altitudes, it is tangent to the inscribed circle; i ts 
residue is f R; it bisects any line segment drawn from the orthocenter to the circumclrcle . 
Thus it has more than nine points associated with it , and has been called an n-point c i rc le , 
Terquem*s ci rc le , the medioscribed c i rc le , the circumscribed midcircle , Feueroach's c i r -
cle , etc. A very interesting history has been given by J. S. MacKay[6] , Coxeter [ l , p. 18 J 
quotes Daniel Pedoe: "This circle i s the f irst really exciting one to appear in any course on 
elementary geometry." 

We have now to return to a discussion of the circumradius R. From the formula 

_ abc 
K " "4R" 

we have in our case 

2 - u2 - 1 u0 + 1 
(37) R = R = ^ - i = - £ _ = J* , 

n 6r 6r 6r 
o r also 

(38) R2 = (u2 - 1 ) 2 . 
n 3(u2 - 4) 
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^ M / LV 
\ 

V 

V 

V 

Figure 1 

But by (11) we have u2 = 12r2 + 4, so 

R 2 = (12r2 + 3)2
 = (4r2 + l)2 

whence 

(39) 

3 ( 1 2 r ) 4r2 

2r + ^ 2r 

as we suggested ear l ie r . The first few values of R are 
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65 901 12545 174725 
30 ' 112 ' 418 

or 

0 + i , 2 + - i , 8 + i 3 0 + 4 ? > 1 1 2 + T T o > 4 1 8 + TTQ > 1 5^0 + 0 ' 2 ' 8 ' 30 ' 112 ' 418 ' ^ ^ 1560 ' 

It i s certainly more interesting, for example, in the triangle 13, 14, 15 to think of the 
circumradius as 8 + 1/8 than as 65/8; this together with the inradius being 4. (We apolo-
gize for writing 1/0 but wish to be suggestive.) 

The sequence of numbers 1, 5, 65, 901, 12545, ••• incidentally, has an interesting 
recurrence. Now we know that these are just 2r t imes R, so let us define a special s e -
quence by 

(40) g = 2rR = 2r R . 
&n n n 

Then g = (u2 - l ) / 3 , but also 

WD gn + 2 = 1 4 g n + 1 " gn " 4> feo = L gi = 5) • 

This completes our present discussion of the properties of special number sequences 
associated with the class of triangles having consecutive integers as sides and having integral 
a reas . The really crucial mat ter was right at the beginning where it was necessary to set up 
a cri terion for the triangles. It is not enough to guess formula (3) or (5), as we must rule out 
any other possibility. This we accomplished by setting up the equation (1) and arguing to (2) 
a s a Accessary condition. That it is a sufficient condition is clear. Any three consecutive 
numbers (>1) do generate a real triangle, and sequence (3) turns out to have integral area. 

We close by suggesting other possible problems. Let u _^2 and consider triangles 
having integral a reas and sides 2u - 1, u, 2u + 1, Then s = 5u/2, and 

s - a = i ( u + 2), s _ b = 3u/2, s - c = - (u - 2) . 

Then 

K2 = B(B _ a)(s _ b)(s _ 0) = i 5 u 2 y 6 - 4 > . 
Again, u must be even. Thus we have evidently to impose the equation 

(42) u2 - 15V2 = 4 . 
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The res t of the discussion is similar to what we presented above. 
Again, let the sides be consecutive Fibonacci numbers. Then 

S = I ( Fn-l + F„ + W = I(Fn+l + W = F„+l • 
and 

s - a = F , s - b = F - , a - c = 0 . n n-1 J 

Thus K = 0. But this is trivial. No triangle is formed; just a degenerate line segment. It 
would be of interest to modify the values so as to have some really interesting Fibonacci t r i -
angle with integral area . We leave this as a problem for any interested reader . Can one, 
for instance, make anything interesting with sides F - d, F , F + d for suitable values 
of d? What interesting Pellian equations and recurrences might be associated with a 
tetrahedron? 
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