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1. INTRODUCTION

Our parent topic will be sequences, in the broadest sense. That is to say, we shall be
dealing with ordered infinite sets of numbers, mostly or usually positive integers, whose
character is determined by (a) some given subsequence of s members, and (b) afunction
linking any given member to its immediate preceding s - ad. In this context the case of
s =1 is trivial, whereas the case of s = 2 includes many well known examples, in partic-
ular those called the Fibonacci and Lucas sequences. Some of the examples of the case
8 = 3 have been discussed under the name of Tribonacci sequences.

Here we restrict attention to s = 2. In characterizing such sequences we use the
letters A and B to denote the given pair (and only coprime A and B will be admitted).
The determining function will be linear, with parameters N and M. Thus the term follow-
ing B will be NA + MB; the next NB + M(NA + MB); and so on. Similarly, the term pre-
ceding A will be (B - MA)/N; and the next A/N - M(B - MA)/N2?; and so on. Each term
is in fact expressible as aA + bB, where the coefficients a and b are polynomials in N
and M, and if we work through the algebra the results shown in Table 1 will be reached.

Note that we have not so far mentioned ordinal numbers associated with the terms of
the sequence. In thinking of the formal sequence, extending to infinity in both directions, we
have to realize that there is an arbitrariness inputting ordinals in one-to-one correspondence
with the terms. But it is patently convenient to associate the term A with "first," so that
all terms less than A are associated with nonpositive ordinals. Not the least reason for
this choice is that the structure of the sequence is such that the expression for terms smaller
than A is different from, and more complicated than the expression for terms greater than
B (the former involve alternating algebraic signs).

Examining Table 1 we observe that it contains the apices of Pascal Triangles, and it is

not difficult to show that, with the proposed ordinal convention, the nt]n term is
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Table 1
POLYNOMIALSIN N AND M SPECIFYING THE SEQUENCE
(ONE TERM PER LINE) OF [aA +bB ], WHERE a = f(N,M) AND b = f'(N, M)

a = Coefficient of A b = Coefficient of B
-(N75M5 + 4N"4MP + 3NT3M) N-5M4 + 3N“4MZ + N3
N74M4 + 3NT3M2 + N2 (N4 + 2NT3M)
-(N73MB + 2N"ZM) N3M2 + N2
N72M? + N1 -(N-2M)
-(N-1np) N-1
_______1_______________________________0 ______________________
0 1
"—“1\; ______________________________ 1;[ _______________________
NM M2 + N
NM? + N2 M + 2NM
NM? + 2N*M M% + 3NM? + N2
NM4 + 3NZMZ + N° M® + ANM® + 3N*M
NM® + 4NZM® + 3N®M ME + 5NM4 + 61M%M2 + N°

2. A TWO-PARAMETER SEQUENCE

In what follows, we shall concentrate on an important special case of the '"s = 2" lin-
ear sequences, namely, that with A = M = 1. The setting of A at unity is actually less
of a restriction than at first appears, in that any sequence with A # 1 can be transformed
to the "unity" set by division of every term by A. This new sequence will retain most of the
properties of its original form, with the notable exception of number-theoretic properties.
The setting of M at unity not only introduces a major simplification into the structure, but,
as we shall see later, it ties in with a natural extension of the classic Fibonacci Rabbit
Problem.

Let us fix a notation at this point. We shall use F to denote the nth member of

B;N;n
the sequence whose parameters are B 0) and N (=1). Thus

(3) ;‘FB’N’l B 1; FB’N:Z - B
F = NF F °

-+
B,N,n B,N,n-2 B,N,n-1
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Normally, B and N will be integers. The case of N being any real number >-1/4 is
worth special consideration; it yields monotonically increasing sequences many of whose
properties are shared with those of N integral; but it will not be explored here. Further-
more, we shall not be specifically concerned with n negative (although it will occasionally
have to be referred to in explication of certain formulas).

The generating function of the sequence is worth noting here. It is theleft-hand side of
the identity

" o]
(4) 1+x(B-1/N _ Z FB,N,nN—an—l )

Cox o ox2
N-x-x =1

This can be verified by multiplying out. And setting B = N = 1 we of course obtain the
familiar generating function of the "original' Fibonacci sequence, which is 1/(1 - x - x2).
We shall use {B,N} to denote the sequence itself, and it must be pointed out at once
that not all { B,N} are unique, sequence-wise. Some may differ only in "key,' to borrow
the musical term, in the sense that a shift in the ordinals (the n-sequence) will make them

identical. For example, the following three sequences can be equalized by such shifts:

n : -3 -2 -1 0 1 2 3 4
{0,1}: 5 -3 2 -1 1 0 1 1
{1,1}: 2 -1

{2,2}: -1 1 o 1 1 2

Explanation is superflulous.
Another type of hidden identity (for the segments with n > 0) is multiplicative, and is
illustrated below:

n : -1 0 1 2 3 4 5

{0,383} : 4/9 -1/3 1 0 3 3 12
{0,3}/3: 4/27 -1/9 1/3 4
{1,8} : 1/3 o0 1 1 4 7 19

o

Thus {O,N}, divided throughout by N isidentical, overpositive n (apart from a 2n-keyshift),
to {1,N}.

Using a subscript to denote keyshift, we can summarize the algebra of these sequences
as follows:
(5) {0,Y} = Y(1,Y} 4 = Y{¥ + 1,Y}43

which of course includes the special case of Y = 1, illustrated above. Furthermore, if
B|N, then



1973] A NEW LOOK AT FIBONACCI GENERALIZATION 43

(6) {x,Y} = x{¥/X +1,Y}u
which has a special case X = Y, so that
(7) {x,Y} = x{2,Y} = 2x{Y/2 + 1,Y}4, (Y even)

And if Y = X(X - 1), the sequence is simply the powers of X, and is infinitely divisible
by X — but every quotient is identical to the original dividend, apart from a shift of key,
Symbolically,

®) = x21 X 21 .

FX(x-1),X,n
Finally, if X > Y+1, all {X,Y} are unique.

In Figure 1, the distribution pattern of these hidden identities is shown for some of the
lower B and N, Each cell is to be regarded as containing a complete sequence {B,N}
— specifically, { X,Y}. A blank cell is understood to contain an irreducible sequence (in
the sense that it cannot be transformed, by division and/or shift of key, into a smaller-B
sequence). Hatched cells contain sequences that are powers of B/. Black cellshold all other

reducible sequences.

1234856789101 12131415161718 1920

woAand up~|%

10
K]

12
13
14
15
16
"
18
19
20

Fig. 1 Distribution of Three Types of {B,N}: (i) reducible (black);
(ii) powers of B (stippled); (ii) irreducibles.

In the Appendix are collected for reference F for n = 1(1)25, and for certain

B,N,n
B (#5) and N (#10). Of the possible total of 50 combinations of B and N, only 34 have
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been tabulated: 14 were omitted because of their being reducibles, and 2 because of their be-
ing merely sequences of powers (which in this context are uninteresting). The omissions, in
short, are conditioned by Fig. 1.

3. PROLIFIC FIBRABBITS

The sequence {1,1} is the original Fibonacci sequence, and {3,1} is the Lucas
sequence — and we can now see why the Lucas sequence is normally regarded as the one
rext' to the Fibonacci sequence; it is because the intervening {2,1} is really {1,1_},' with

a unit shift of key. We may note in passing that (for any given fixed N, say Y) the identity

© Fivon " F1,v,m2 T Fysz,v,no1
yields the well known relation between member of the Fibonacci and Lucas sequences when
we set Y at unity.

The interesting thing about {1,N} is that it furnishes solutions to the Fibonacci Rabbit
problem generalized to the situation in which each pair gives birth to N pairs at a time, in-
stead of one. This is perhaps best appreciated by reference to a time-table, as in Table 2.

Table 2

NUMBER OF PAIRS OF IMMORTAL RABBITS ALIVE,
BY MONTH (t) AND GENERATION (g in N®),
IN A BREEDING REGIME THAT UNFAILINGLY YIELDS N PAIRS PER MONTHLY BIRTH

! t _=1 N NN N3 Nt N5 NS 1Sum wh;n N = 5
0 1 1 1 1
1 1 1 1 1
2 1 1 2 3 4
3 1 2 3 5 7
4 1 3 5 11 19
5 1 4 3 8 21 40
6 1 5 1 13 43 97
7 1 6 10 4 21 85 217
8 1 7 15 10 1 34 171 508
9 1 8 21 20 5 55 341 1159
10 1 9 28 35 15 1 89 683 2683
11 1 10 36 56 35 6 144 | 1365 6160
12 1 11 45 84 70 21 1 233 | 2731 | 14209
13 1 12 55 120 126 56 7 377 5461 32689

We imagine, after Fibonacci, a pair of month-old rabbits mated in an enclosure, and giving

birth to N new pairs every month thereafter; and each of the new pairs breeds similarly
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after a month's maturation. The table can be readily constructed from elementarycensider-
ations, with each column representing a generation, beginning at the zeroth — and the con-
struction is in fact the familiar tilted Pascal Triangle. At the beginning of the second month
there will be 1+ N pairs; at the beginning of the third there will be 1 + 2N pairs, and so
forth. Clearly, the sums in the end columns will be

0

(10) Z(“ - i - 1)Ni

i=0

— which is expression (1) with A = B = M = 1 and the utilization of Pascal's Rule for the
addition of binomial coefficients. In other words, Eq. (10) is Fl,N,n .

It is possible to sophisticate the treatment by allowance for deaths, the simplest situa-
tion being to schedule the death of a mated pair of rabbits immediately after the birth of its
m® litter. Hoggatt and Lind [2] have shown how this can be done for the classic case, in
which N = 1. For N2 1 the crude arithmetic of the population growth is straightforward
enough, but it does not condense well, The population increment from the gth generation at

time n (=t +1) can be written

0
ifg-1 h h-m h-m-1 h-2m -1
o Fer(r) (1) () Come)(om)
i=0

where

h=n-g-im-2,

and the summation of (11) over all g and all time points to n gives the required population
size at n. This is clumsy, but a compact operation is elusive.

Actually, allowance for restricted litteringand for mortality does not make a great dif-
ference to the population, which, with N > 1, soon becomes enormous. For example,
Fl, 5,23 = 3912 125 9;3(211, and if we limit m to 5 (and remove the parents subsequently),
the population at the 23"~ month will still be 3 759 051 250, which is 96 percent of the for-
mer figure (and represents more than one pair of rabbits for every human being onearth).

Incidentally, in considering litters with more thantwo siblings, we can easily cope with
a sex ratio other than 50:50. Suppose, for instance, that litters of five bucks and four does
are to be substituted for the classic one buck and one doe (perlitter): we carry out the arith-
metic for N = 4, and then multiply the answer by the factor (4 +5)/4; this will give us the

required population (in, of course, rabbits, not pairs of rabbits).

4. ™ AND THE EXPLICIT FORMULAS

A sequence of the kind we are discussing may intuitively be expected to have a limiting

ratio of adjacent terms, and in fact it is well established that such a ratio exists and is
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independent of B. But it is not independent of N. By extension from the familiar treatment

of the case of { 1, 1}, we write the auxiliary equation

N L I = L ¢
(12) N N N Ty
d divid . Tn—2 R
and divide it by N to give, after rearrangement,
T2 _ - =
(13) N TN N 0.

The roots of (13) are 1/2 + NN + 1/4, and we identify the positive root with the required
limiting ratio, T. The other root, we note, is 1 -T_ .

N
So the asymptotic growth rate (per unit interval) of all {B, 1} (including the original
Fibonacci and Lucas sequences) is 1/2 + N5/2 = 1.618034 +++; thatof all {B,2} is 1/2 +

N9/2; that of all {B,3} is 1/2 + N1I3/2 = 2.302775 *++; and so on. These asymptotes are
approached rapidly: turning to the sums at the right foot of Table 2, for example, we
shall find that 377/233 = 1.618 «--, that 5461/2731 = 2.000 **+, and that 32689/14209 =
2,301 -,

The powers of TN can be expressed in terms of two F's, thus:
F n NAN + 1

n _ Tiaex,x,n T F1N,
N 3

(14) T

and

F -F NAN + 1
(15) Tl—\In _ _1+2X,Xyn 21,N,n (_1/N)n ,

where X is the particular value of N and determines B in the first F of the numerator.

The quantity 7.. can be used to derive explicit expressions for any F by virtue

N B,N,n

of the relation

(16) F = kT

1 n-1
B,N,n =~ KTn  * k(- Ty) J

where the k's are constants that can be evaluated from our knowledge of the two parametric

members of the sequence

F =1=k1+k2
and

F =B=k1TN+k2(1—TN) s

whence
ky = (’TN +B - 1)/(2TN - 1)
ky = (TN - B)/(21'N -1 .

Therefore,
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T B Tn-l T T n-1
. =(N+B 1)N +(N B)(1 N)
B,N,n ZTN -1

am
1 n
(Tg+B - Dy - DT = (g - BT - 7o)
N(ZTN - 1)

T..T - =
(because N( N 1) = N),

1t is perhaps worthwhile recasting (17) without 7. In so dbingwe write NN + 1/4 = R,

N
and obtain

18 F _IN-®-1@/2 -RI@/2+0)" - [N-@B-1)@/2+R)]@/2 -R"
B, N,n 2NR :

It is here to be noted that, in particular,

_ /2 +R" - @/2 - R
1,N,n 2R ?

(19) F

which, with N = 1, yieldsthe established explicit formula for a member of the original Fib-
onacci sequence. And, again,
— n / n
(20) FS,N,n = (1/2 + R + (1/2 - R)" ,
which, with N = 1, yields the established explicit formula for a member of the Lucas

sequence.

5. SOME IDENTITIES

Our topic is rich in interesting identities, and in this section a few of the more impoxr-
tant ones will be set out together with their degeneralizations to more familiar forms. We
omit proofs, which can be constructed on traditional (and mostly inductional) lines —many
exercises and problems can in fact be drawn from the statements.

One of the simplest and most revealing of the identities, an almost obvious consequence

of expression (1), is

(21) Fo,Non = N9 Nyn-2 T BFi N1
An allied identity is
(22) F =X

B, N,n ¥y Nn-1 T FBox,N,n

with the special case in which X = B - 1:

(23) = (B - )F

FB,N,n 1,N,n-1 * F1i,n,n

Summations of terms and powers of terms are often neatly expressible. For example:
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n
(@4) 2o F i = Fp oy, pep - BN
=1

and its relation to the familiar {1, 1} is plain to see.
The sum of squares to a given n can be eompactly expressed for N = 1:

n
2 = _ _

(25) 251,10 = TB,1,0 B, 1,001 - B - D

i=1
but less so for B = 1:

n 32 2 _ _ 9 B 9 _ _
(26) E 2 = NFlsN»n—l NN N 1)F1,N,n Fl,N,n+1 N -1
' 1,N,1 TN + DN - 2

i=1

which, with N = 1, becomes

= (F2 + F? - F2 )/2 =

1,104 T Fi,1,0 7 F1,1,0-1 Fi1,0f1,1,041 °

A central identity, with several useful reductions, is

(27) = (1)1 (B2-B-N) .

FB, N,nFB, N,n4x+y ~ FB, N, n+xFB, N,n+y i, N, xFl, N,y

Setting y = -x, and bearing in mind that F1 N
to

=2 B — n+x-1, n-x-1_9
(28) F5,Nn = ¥B,N,n-x'B,N,nsx = 1 N LN, x

_ n-1
,on = (-1 NnFl,N,n’ we can reduce (27)
(B2 - B - N).
And setting x = -y = 1 gives us

(29) F2 = ()2 iB-oN .

B,N,n ~ FB, N,n—lFB, N,n+1

Lastly, as regards reduction of (27), if we set x =y =n' -1, and n = 1, we obtain (after

depriming n'):

(30) F2 B2 -B-N)

- = 2
B,N,n FB,N,Zn—l Fl,N,n—l

(and this, when B = N = 1, becomes the well known two-consecutive-square identity in

{1,1}.

A general "adjacent products' identity is

(1) = NFp nn-1FB,Nx F PN B N1 ~ B - DF

FB,N,1r1+x B, N,n+x-1



1973] A NEW LOOK AT FIBONACCI GENERALIZATION 49

which, when x = n, can be expressed in several forms:

Fe,non = FB,N,n™FB,Nyn-1 * Fo,Nyni1) ~ ® - DFp 201
(32) = B, N,n41 - NFE,N,n-1 - B - DFp o
= 2P N,0FB,N,n#1 ~ FB,Nyn - B - DFp N 201
(and from the first of which we readily infer that iff B = 1, then FB, N, 2n must be com-
posite (being divisible by FB, N,n))'
If, in (31), we put x = 2n, the result is

@3 Fp,N,30 = M, n,n-17B,N,20 * FB,N,0F B, N, 2001 ~ B - VFp 303
And here are two cubic relations that apply when B is unity:

FiNyen — ONF1,nn-1F1,N,nF 1, wpne + O F DFY g
B = F:)Z‘l,N,n+1 + NF%,N,n - N31'?31,N,n—1

— the former of which, incidentally, tells us that F (mod 3) is always composite.

1,N,0

6., SOME MISCELLANEOUS POINTS

1. In Section 2, it is mentioned that real N < -1/4 is out of court, so to say. The
reason is that the discriminant of the roots of the generalized Fibonacci quadratic is zero at
N = -1/4, and negative beyond. At N = -1/4 we have that FiNon = n/zn—l, so that

E] 2

™ = [lim, n—»w]@® + 1)/2n = 1/2.
At N < -1/4 the terms of the sequence take alternating algebraic signs, and there is no
limiting ratio in the usual sense; what happens of course is that T N moves onto the gaussian
plane.

2. The number-theoretic properties of {B,N} need examination. It seems clear that
the main theorems of divisibility and primality [3] applicable to {1, 1} also apply, mutatis
mutandis, to {1,N}. And squares are rare among the F's in the Appendix (outside of {1, 1},
in which it is known that only F1,1,12 B,N,4) I find only
F1,4,8 = 441, and F1,8,6 = 225, (Note that X(X - 1),X , which is a sequence of powers,
contains an infinity of squares, but this is an oddity.)

is a square, and beyond F

Interesting problems in this area take the form: In how many ways, if at all, can a
given natural number be represented as FB N.n ?
9 9
3. The digits of a Fibonacci number, at a given decimal place, occur in cycles along

the ascending sequence. Lagrange, says Coxeter [1], observed that the final digits of { 1, 1}
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repeat in cycles of 60. The question naturallyarises as to the cycling pattern of other {B,N}.

The answer is in Table 3.

Table 3
CYCLE SIZE OF REPEATED FINAL DIGITS IN {B,N} (EXCLUDING Fo x.1)
3 E)
N mod 10
o 1 2 3 4 5 6 7 8 9
B mod 5
0, 1, and 2 1 60 4 24 6 3 20 12 24
12 4 24 6 3 4 12 24
1 60 24 20 6 24
REFERENCES

1. H. S. M. Coxeter, Infroduction to Geometry, Wiley, New York, 1967, p. 168,

2. V. E. Hoggatt, Jr., and D. A, Lind, '""The Dying Rabbit Problem,' Fibonacci Quarterly,
Vol. 7, No. 4 (1969), pp. 482-487,

3. N. N. Vorob'ev, Fibonacci Numbers, Blaisdell Publishing Company, New York, 1961,

Saturday, October 21, 1972

9:15 a. m.
9:30 - 10:20
10:30 - 11:20
11:30 - 12:00
1:30 - 2:20
2:30 - 3:20
3:30 - 4:10

APPENDIX

B,N,n TO n = 25

The tables appear on the following pages.

VARIOUS F

,.p-<>-0—<>—0

CONFERENCE PROGRAM
FIBONACCI ASSOCIATION MEETING
San Jose State University, Macquarrie Hall

Registration

SOME QUASI-EXOTIC THEOREMS
Dmitri Thoro, Professor of Mathematics, San Jose State University

GENERALIZED LEO MOSER PROBLEMS
Pat Gomez, Student, San Jose State University

FUN WITH FIBONACCI AT THE CHESS MATCH AND THE BALL PARK
Marjorie Bicknell, Mathematics Teacher, A. C. Wilcox High School

INTERVALS CONTAINING INFINITELY MANY SETS OF ALGEBRAIC
INTEGERS — Raphael Robinson, Professor of Mathematics,
University of California, Berkeley

SOME ADDITION THEOREMS IN NUMBER THEORY
C. T. Long, Professor of Mathematics, Washington State University,
Visiting University of British Columbia

SOME CONGRUENCESOF THE FIBONACCINUMBERSMODULO A PRIME,
V. E. Hoggatt, Jr., San Jose State University

Lot sea
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LINEARLY GENERALIZED FIBONACCI NUMBERS

FB,N,n WITH B = 2
N
3 5 7 9
n
1 1 1 1 1
2 2 2 2 2
3 5 7 9 11
4 11 17 23 29
5 26 52 86 128
6 59 137 247 389
7 137 397 849 1541
8 314 1082 2 578 5 042
9 725 3 067 8 521 18 911
10 1667 8 477 26 567 64 289
11 3 824 23 812 86 214 234 488
12 8 843 66 197 272 183 813 089
13 20 369 185 257 875 681 2 923 481
14 46 898 516 242 2 780 692 10 241 282
15 108 005 1 442 527 8 910 729 36 552 611
16 248 699 4023 737 28 377 463 128 724 149
17 572 714 11 236 372 90 752 566 457 697 648
18 1 318 811 31 355 057 289 394 807 1616 214 989
19 3 036 953 87 536 917 924 662 769 5 735 493 821
20 6 993 386 244 312 202 2 950 426 418 20 281 428 722
21 16 104 245 681 996 787 9 423 065 801 71 900 873 111
22 37 084 403 1903 557 797 30 076 050 727 254 433 731 609
23 85 397 138 5 313 541 732 96 037 511 334 901 541 589 608
24 196 650 347 14 831 330 717 306 569 866 423 3 191 445 174 089
25 452 841 761 41 399 039 377 978 832 445 761 11 305 319 480 561




1973]

A NEW LOOK AT FIBONACCI GENERALIZATION 53
LINEARLY GENERALIZED FIBONACCI NUMBERS
FB,N,n WITH B = 3
N
1 4 5 7 8 10
n
1 1 1 1 1 1 1
2 3 3 3 3 3 3
3 4 7 8 10 | 11 13
4 7 19 23 31 35 43
5 11 47 63 101 123 173
6 18 123 178 318 403 603
7 29 311 493 1025 1387 2 333
8 47 803 1383 3 251 4611 8 363
9 76 2 047 3 848 10 426 15 707 31 693
10 123 5 259 10 763 33 183 52 595 115 323
11 199 13 447 30 003 106 165 178 251 432 253
12 322 34 483 83 818 338 446 599 011 1585 483
13 521 88 271 233 833 1081601 2 025 119 5908 013
14 843 226 203 652 923 3 450 723 6 817 107 21 762 843
15 1 364 579 287 1822 088 11 021 930 23 017 259 80 842 973
16 2 207 1484 099 5 086 703 35 176 991 77 554 115 298 471 403
17 3 571 3 801 247 14 197 143 112 330 501 261 692 187 1106 901 133
18 5 778 9 737 643 39 630 658 358 569 438 882 125 107 4 091 615 163
19 9 349 24 942 631 110 616 373 1144 882 945 2 975 662 603 15 160 626 493
20 | 15 127 63 893 203 308 769 663 3 654 869 011 10 032 663 459 56 076 778 123
21 | 24 476 | 163 663 727 861 851 528 11 669 049 626 33 837 964 283 207 683 043 053
22 |39 603 | 419 236 539| 2 405 699 843 37 253 132 703 | 114 099 271 955 768 450 824 283
23 | 64 079 |1073 891 447 | 6 714 957 483| 118 936 480 085| 384 802 986 219 | 2 845 281 254 813
24 FLOS 682 (2750 827 603 |18 743 456 698 379 708 409 006 |1 297 597 161 859 |10 529 789 497 643
167 761 |7046 403 391 |52 318 244 113|1 212 263 769 601 [4 376 021 251 611 |38 982 602 045 773 |

25




54 A NEW LOOK AT FIBONACCI GENERALIZATION [Feb.
LINEARLY GENERALIZED FIBONACCI NUMBERS
FB,N,n WITH B = 4
N\ x
\ 1 2 5 6 7 9 10
n
1 1 1 1 1 1 1 1
2 4 4 4 4 4 4 4
3 5 6 9 10 11 13 14
4 9 14 29 34 39 49 54
5 14 26 74 94 116 166 194
6 23 54 219 298 389 607 734
7 37 106 589 862 1201 2101 2 674
8 60 214 1684 2 650 3 924 7 564 10 014
9 97 426 4 629 7822 12 331 26 473 36 754
10 157 854 13 049 23 722 39 799 94 549 136894
11 254 1706 36 194 70 654 126 116 332 806 504 434
12 411 3414 101 439 212 986 404 709 1183 747 1873 374
13 665| 6 826 282 409 636 910 1287 521 4179 001 6 917 714
14 1076 13 654 789 604 1914 826 4 120 484 14 832 724 25 651 454
15 1 741 27 306 2 201 649 5 736 286 13133 131 52 443 733 94 828 594
16 2 817 54 614 6 149 669 17 225 242 41 976 519 185 938 249 351 343 134
17 4 558 109 226 17 157 914 51 642 958 133 908 436 657 931 846 1299 629 074
18 T 375 218 454 47 906 259 154 994 410 427 744 079 2 331 376 087 4 813 060 414
19 11 933 436 906 133 695 829 464 852 158 1365103 121 8 252 762 701 17 809 351 154
20 19 308 873 814 373 227 124 1 394 818 618 4 359 311 604 29 235 147 484 65 939 955 294
21 31 241 1747 626/ 1041 706 269 4 183 931 566 13 915 033 451 103 510 011 793 244 033 466 834
22 50 549 3 495 254| 2 907 841 889| 12 552 843 274 44 430 214 679 366 626 339 149 903 433 019 774
23 81 790; 6 990 506| 8 116 373 234| 37 656 432 670| 141 835 448 836| 1 298 216 445 286 3 343 767 688 114
24 (132 339) 13 981 014|22 655 582 679|112 973 492 314| 452 846 951 589| 4 597 853 497 627| 12 378 097 885 584
25 1214 129 27 962 026) 63 237 448 849|338 912 088 3341 445 695 093 441|16 281 801 505 201|45 815 774 766 994




1973]

A NEW LOOK AT FIBONACCI GENERALIZATION 55
LINEARLY GENERALIZED FIBONACCI NUMBERS
FB,N,n WITH B = 5
N
1 2 3 6 7 8 9
n
1 1 1 1 1 1 1 1
2 5 5 5 5 5 5 5
3 6 7 8 11 12 13 14
4 11 17 23 41 47 53 59
5 17 31 47 107 131 157 185
6 28 65 116 353 460 581 716
7 45 127 257 995 1377 1837 2 381
8 73 257 605 3113 4 597 6 485 8 825
9 118 511 1376 9 083 14 236 21 181 30 254
10 191 1025 3191 27 761 46 415 73 061 109 769
11 309 2 047 7 319 82 259 146 067 242 509 381 965
12 500 4 097 16 892 248 825 470 972 826 997 1369 076
13 809 8 191 38 849 742 379 1493 441 2 767 069 4 806 761
14 1309 16 385 89 525 2 235 329 4 790 245 9 383 045 17 128 445
15 2 118 32 767 206 072 6 689 603 15 244 332 31 519 597 60 389 294
16 3 427 65 537 474 647 20 101 577 48 776 047 106 583 957 214 545 299
17 5 545 131 071 1 092 863 60 239 195 155 486 371 358 740 733 758 048 945
18 8 972 262 145| 2 516 804 180 848 657 496 918 700 1211 412 389 2 688 956 636
19 || 14 517 524 287 | 5 795 393 542 283 827 1 585 323 297 4 081 338 253 9 511 397 141
20 || 23489 1048 577 13 345805 | 1 627 375 769 5063 754 197 13 772 637 365 33 712 006 865
21 || 38 006 2097 151 | 30 731 984| 4 881 078 731 16 161 017 276 46 423 343 389 119 314 581 134
22 || 61 495| 4 194 305| 70 769 399 | 14 645 333 345 51 607 296 655| 156 604 442 309 422 722 642 919
23 || 99 501| 8 388 607|162 965 351 | 43 931 805 731 | 164 734 417 587 | 527 991 189 421 1 496 553 873 125
24 11160 996 |16 777 217 {375 273 548 |131 803 805 801 | 525 985 494 172 |1 780 826 727 893 | 5 301 057 659 396
25 ||260 497 |33 554 431 |864 169 601 {395 394 640 187 |1 679 126 417 281 |6 004 756 243 261 ‘118 770 042 517 521




