A PRIMER FOR THE FIBONACCI NUMBERS
 PART XI: MULTISECTION GENERATING FUNCTIONS FOR THE COLUMNS OF PASCAL'S TRIANGLE
 VERNER E. HOGGATT, JR., and JANET CRUMP ANAYA San Jose State University, San Jose, California

1. INTRODUCTION

Let

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

be the generating function for the sequence $\left\{a_{n}\right\}$. Often one desires generating functions which multisect the sequence $\left\{a_{n}\right\}$,

$$
G_{i}(x)=\sum_{j=0}^{\infty} a_{i+m j} x^{j}, \quad(i=0,1,2, \cdots, m-1) .
$$

For the bisection generating functions the task is easy. Let

$$
\begin{aligned}
& \mathrm{H}_{1}\left(\mathrm{x}^{2}\right)=\frac{\mathrm{f}(\mathrm{x})+\mathrm{f}(-\mathrm{x})}{2} \\
& \mathrm{H}_{2}\left(\mathrm{x}^{2}\right)=\frac{\mathrm{f}(\mathrm{x})-\mathrm{f}(-\mathrm{x})}{2 \mathrm{x}}
\end{aligned}
$$

then clearly $H_{1}\left(x^{2}\right)$ and $H_{2}\left(x^{2}\right)$ contain only even powers of x so that

$$
\mathrm{H}_{1}(\mathrm{x})=\sum_{\mathrm{n}=0}^{\infty} \mathrm{a}_{2 \mathrm{n}} \mathrm{x}^{\mathrm{n}} \quad \text { and } \quad \mathrm{H}_{2}(\mathrm{x})=\sum_{\mathrm{n}=0}^{\infty} \mathrm{a}_{2 \mathrm{n}+1} \mathrm{x}^{\mathrm{n}}
$$

are what we are looking for.
Let us illustrate this for the Fibonacci sequence. Here

$$
\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{1-\mathrm{x}-\mathrm{x}^{2}}=\sum_{\mathrm{n}=0}^{\infty} \mathrm{F}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}
$$

then

$$
H_{1}(x)=\frac{x}{1-3 x+x^{2}}=\sum_{n=0}^{\infty} F_{2 n} x^{n}
$$

and

$$
H_{2}(x)=\frac{1-x}{1-3 x+x^{2}}=\sum_{n=0}^{\infty} F_{2 n+1} x^{n}
$$

Exercise: Find the bisection generating functions for the Lucas sequence.
Let us find the general multisecting generating functions for the Fibonacci sequence, using the method of H. W. Gould [1]. The Fibonacci sequence enjoys the Binet Form

$$
\mathrm{F}_{\mathrm{n}}=\frac{\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}}{\alpha-\beta}, \quad \alpha=\frac{1+\sqrt{5}}{2}, \quad \beta=\frac{1-\sqrt{5}}{2}
$$

Let $f(x)=1 /(1-x)$; then

$$
\begin{aligned}
& \sum_{n=0}^{\infty} F_{m n+j} x^{n}=\frac{\alpha^{j} f\left(\alpha^{m} x\right)-\beta^{j}{ }_{f(\beta} \mathrm{m}_{\mathrm{x})}}{\alpha-\beta} \\
& =\frac{1}{\alpha-\beta}\left(\frac{\alpha^{\mathrm{j}}}{1-\alpha^{\mathrm{m}_{\mathrm{x}}}}-\frac{\beta^{\mathrm{j}}}{1-\beta_{\mathrm{x}}}\right) \\
& =\frac{\frac{\alpha^{\mathrm{j}}-\beta^{\mathrm{j}}}{\alpha-\beta}+(\alpha \beta)^{\mathrm{j}} \frac{\alpha^{\mathrm{m}-\mathrm{j}}-\beta^{\mathrm{m}-\mathrm{j}}}{\alpha-\beta} \mathrm{x}}{1-\left(\alpha^{\mathrm{m}}+\beta^{\mathrm{m}}\right) \mathrm{x}+(\alpha \beta)^{\mathrm{m}} \mathrm{x}^{2}} \\
& =\frac{F_{j}+(-1)^{j} F_{m-j} x}{1-L_{m} x+(-1)^{m} x^{2}}, \quad(j=0,1,2, \cdots, m-1),
\end{aligned}
$$

since $\alpha \beta=-1, \alpha^{\mathrm{m}}+\beta^{\mathrm{m}}=\mathrm{L}_{\mathrm{m}}$, and

$$
\mathrm{F}_{\mathrm{n}}=\frac{\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}}{\alpha-\beta}
$$

Exercise: Find the general multisecting generating function for the Lucas sequence.
The same technique can be used on any sequence having a Binet Form. The general problem of multisecting a general sequence rapidly becomes very complicated according to Riordan [2], even in the classical case.

2. COLUMN GENERATORS OF PASCAL'S TRIANGLE

The column generators of Pascal's left-justified triangle [3], [4], [5], are

$$
\mathrm{G}_{\mathrm{k}}(\mathrm{x})=\frac{\mathrm{x}^{\mathrm{k}}}{(1-\mathrm{x})^{\mathrm{k}+1}}=\sum_{\mathrm{n}=0}^{\infty}\binom{\mathrm{n}}{\mathrm{k}} \mathrm{x}^{\mathrm{n}}, \quad \mathrm{k}=0,1,2, \cdots
$$

We now seek generating functions which will m -sect these,

$$
G_{i}(m, k ; x)=\sum_{n=0}^{\infty}\binom{i+k+m n}{k} x^{n+k+1}, \quad(i=0,1, \cdots, m-1)
$$

We first cite an obvious little lemma.
Lemma 1.

$$
\binom{n}{k}=\sum_{j=1}^{m}\binom{n-j}{k-1}+\binom{n-m}{k}
$$

Definition. Let $G_{i, k}(x), i=0,1,2, \cdots, m-1$, be the m generating functions

$$
G_{i, k}(x)=\sum_{n=0}^{\infty}(i+k+m n) x_{k}^{i+m n+k}
$$

Lemma 2.

$$
G_{i, k+1}(x)=\frac{x G_{i, k}(x)+x^{2} G_{i-1, k}(x)+\cdots+x^{m} G_{i-m+1, k}(x)}{1-x^{m}}
$$

The proof follows easily from Lemma 1.
Let

$$
\left(1+x+x^{2}+\cdots+x^{m-1}\right)^{n}=\sum_{j=0}^{n(m-1)}\binom{n}{j}_{m} x^{j}
$$

define the row elements of the m-nomial triangle. Further, let

$$
\mathrm{f}_{\mathrm{i}}(\mathrm{~m}, \mathrm{k} ; \mathrm{x})=\sum_{\mathrm{j}=0}\binom{\mathrm{k}}{\mathrm{i}+\mathrm{jm}}_{\mathrm{m}} \mathrm{x}^{\mathrm{j}}, \quad \mathrm{i}=0,1, \cdots, \mathrm{~m}-1
$$

where j is such that $\mathrm{i}+\mathrm{jm} \leq \mathrm{k}(\mathrm{m}-1)$. These are multisecting polynomials for the rows of the m-nomial triangle. Now, we can state an interesting theorem:

Theorem. For $\mathrm{i}=0,1,2, \cdots, \mathrm{~m}-1$,

$$
G_{i}(m, k ; x)=\frac{x^{k+i} f_{i}(m, k ; x)}{(1-x)^{k+1}}
$$

Proof. Recall first that the m-nomial coefficients obey

$$
\binom{n}{r}_{m}=\binom{n-1}{r}_{m}+\binom{n-1}{r-1}_{m}+\cdots+\binom{n-1}{r-m+1}_{m}
$$

where the lower arguments are non-negative and less than or equal to $n(m-1)$.
Clearly, for $\mathrm{k}=0$, from the definition just before Lemma 2 ,

$$
G_{i, 0}(x)=\frac{x^{i}}{1-x^{m}}, \quad i=0,1,2, \cdots, m-1
$$

Assume now that

$$
G_{i, k}(x)=\frac{x^{k+i} f_{i}\left(m, k ; x^{m}\right)}{\left(1-x^{m}\right)^{k+1}}
$$

for $\mathrm{i}=0,1,2,3, \cdots,(\mathrm{~m}-1)$. From Lemma 2 ,

$$
G_{i, k+1}(x)=\frac{x G_{i-1, k}(x)+\cdots+x^{m} G_{i-m+1, k}(x)}{1-x^{m}}
$$

Thus,

$$
\begin{aligned}
& G_{i, k+1}(x)\left.=\frac{\sum_{s=0}^{m-1}\left(\sum_{j=0}\left(i-s^{k}+j m\right) m\right.}{}\right) x^{k+(i-s)+s+j m+1} \\
&\left(1-x^{m}\right)^{k+2} \\
&=\frac{\sum_{j=0}\left(\sum_{s=0}^{m-1}\left(i-s^{k}+j m\right)_{m}\right) x^{k+1+i+j m}}{\left(1-x^{m}\right)^{k+2}} \\
&\left.=\frac{x^{k+1+i} \sum_{j=0}((k+1}{i+j m}\right)_{m} x^{j m} \\
&=\frac{\left.x^{k+1+i}-x^{m}\right)^{k+2}\left(m, k ; x^{m}\right)}{\left(1-x^{m}\right)^{k+2}}
\end{aligned}
$$

This completes the induction.
The $\mathrm{x}^{\mathrm{k}+1+\mathrm{i}}$ merely position the column generators. Here the non-zero entries are separated by $m-1$ zeros. To get rid of the zeros, let

$$
G_{i}(m, k ; x)=\frac{x^{k+i} f_{i}(m, k ; x)}{(1-x)^{k+1}}
$$

for $\mathrm{i}=0,1,2, \cdots, \mathrm{~m}-1$. This concludes the proof of the theorem.
If we write this in the form

$$
G_{i}(m, k ; x)=\sum_{j=0}^{\infty}(i+\underset{k}{j m}+k) x^{j+k+1}=\frac{\sum_{j=0}\binom{k}{i+j m} m^{x+i+j}}{(1-x)^{k+1}}
$$

it emphasizes the relation of the multisection of the $k^{\text {th }}$ column of Pascal's triangle and the multisection of the $k^{\text {th }}$ row of the m-nomial triangle.

3. A NEAT GENERATING FUNCTION

Lemma 3

$$
\binom{n}{k}=\sum_{j=0}^{r}\binom{r}{j}\binom{n-r}{k-j}
$$

This is easy to prove by starting with
(A)

$$
\begin{aligned}
\binom{n}{k} & =\binom{n-1}{k}+\binom{n-1}{k-1} \\
& =\binom{n-2}{k}+\binom{n-2}{k-1}+\binom{n-2}{k-1}+\binom{n-2}{k-2} \\
& =1 \cdot\binom{n-2}{k}+2 \cdot\binom{n-2}{k-1}+1 \cdot\binom{n-2}{k-2} .
\end{aligned}
$$

Apply (A) to each term on the right repeatedly.
Now let $H_{i}(m, k ; x) m$-sect the $k^{\text {th }}$ column of Pascal's triangle $(i=0,1,2, \cdots$, $\mathrm{m}-1$); then, using Lemma 3, it follows that

Lemma 4

$$
H_{i}(m, k ; x)=\frac{x}{1-x} \sum_{j=1}^{m}\binom{m}{j} H_{i}(m, k-j ; x) .
$$

The results using the method of Polya for small m and i seem to indicate the following [3].

Theorem. The generating functions for the rising diagonal sums of the rows of Pascal's triangle $\mathrm{i}+\mathrm{jm}$ (all other rows are deleted) are given by

$$
H_{i}(x)=\frac{(1+x)^{i}}{1-x(1+x)^{m}}, \quad i=0,1, \cdots, m-1
$$

Exercise: Show that

$$
\sum_{i=0}^{m-1} x^{i} H_{i}\left(x^{m}\right)=\frac{1}{1-x\left(1+x^{m}\right)}
$$

This is a necessary condition which now makes the theorem plausible. These are the generalized Fibonacci numbers obtained as rising diagonal sums from Pascal's triangle, beginning in the left-most column and going over 1 and up m 3 . The theorem is proved by careful examination of its meaning with regards to Pascal's triangle as follows:

$$
\frac{(1+x)^{i}}{1-x(1+x)^{m}}=\sum_{n=0}^{\infty} x^{n}(1+x)^{m n+i}=\sum_{n=0}^{\infty} \sum_{j=0}^{n}\binom{m(n-j)+i}{j} x^{n}
$$

Recall that $\binom{n}{k}=0$ if $0 \leq n \leq k$.

ILLUSTRATION

$$
\begin{aligned}
& \mathrm{n}=0 \quad \mathrm{x}^{0}(1+\mathrm{x})^{0+1}=1+\mathrm{x} \\
& \mathrm{n}=1 \mathrm{x}^{1}(1+\mathrm{x})^{2+1}=\mathrm{x}+3 \mathrm{x}^{2}+3 \mathrm{x}^{3}+\mathrm{x}^{4} \\
& n=2 x^{2}(1+x)^{4+1}=\quad x^{2}+5 x^{3}+10 x^{4}+10 x^{5}+5 x^{6}+x^{7} \\
& \mathrm{n}=3 \mathrm{x}^{3}(1+\mathrm{x})^{6+1}=\quad \mathrm{x}^{3}+7 \mathrm{x}^{4}+21 \mathrm{x}^{5}+\cdots \\
& \text { Sum: } \quad 1+2 x+4 x^{2}+9 x^{3}+19 x^{4}+\cdots
\end{aligned}
$$

Here, $m=2$ and $i=1$. Now, write aleft-justified Pascal's triangle. Form the sequence of sums of elements found by beginning in the left-most column and proceeding right one and up two throughout the array: $1,1,1,2,3,4,6,9,13,19, \cdots$. Notice that the coefficients of successive powers of x give every other term in that sequence.

The general problem of finding generating functions which multisect the column generators of Pascal's triangle has been solved by Nilson [6], although interpretation of the numerator polynomial coefficients has not been achieved as in our last few theorems. [Continued on page 104.]

