Lack of Uniqueness - Predicting the Number of Different Summations

Can you foretell the number of different summation representations of our type, each having k terms, and leading to the same Fibonacci number F_{n} ? Using relationship (15), our prediction becomes:

If set T is defined by

$$
\mathrm{T}=\left\{\mathrm{t}: 4 \leq \mathrm{t} \leq \frac{\mathrm{n}-3}{\mathrm{k}-1}\right\}
$$

then the numerosity of T, that is, the number

$$
\begin{equation*}
\left[\frac{n-3}{k-1}\right]-3 \tag{16}
\end{equation*}
$$

predicts the possible number of different summations of our type, each having k terms and leading to the Fibonacci number F_{n}.

To illustrate, there will be 52 ten-term summations of our kind leading to F_{500}. We would have:

$$
\begin{aligned}
\sum_{i=0}^{9}\binom{9}{i} F_{54}^{9-i} F_{55}^{i} F_{5+i} & =\sum_{i=0}^{9}\binom{9}{i} F_{53}^{9-i} F_{54}^{i} F_{14+i}=\sum_{i=0}^{9}\binom{9}{i} F_{52}^{9-i} F_{53}^{i} F_{23+i} \\
& =\cdots=\sum_{i=0}^{9}\binom{9}{i} F_{3}^{9-i} F_{4}^{i} F_{464+i}=F_{500}
\end{aligned}
$$

[Continued from page 62.]
then $V_{n}=L_{n}$, the Lucas sequence, and so (III) now gives the correct expression for (9) in (*).

Case 2. $\quad \mathrm{A}+\mathrm{B}=0$. We now obtain from (II)
(IV)

$$
\frac{f\left(x+c_{1}\right)-f\left(x+c_{2}\right)}{c_{1}-c_{2}}=\sum_{n=0}^{\infty} \frac{U_{n}}{n!} D^{n_{f}(x)}
$$

where $U_{0}=0, U_{1}=1$, and $U_{n+2}=P U_{n+1}-Q U_{n}$. Thus for $P=1, Q=-1, U_{n}=F_{n}$; and for $P=2, Q=-1, U_{n}=P_{n}$, the Pell sequence. For $m=1,2, \cdots$, we obtain from (IV)

$$
\begin{equation*}
\frac{\mathrm{f}\left(\mathrm{x}+\mathrm{c}_{1}^{\mathrm{m}}\right)-\mathrm{f}\left(\mathrm{x}+\mathrm{c}_{2}^{\mathrm{m}}\right)}{\mathrm{c}_{1}-\mathrm{c}_{2}}=\sum_{\mathrm{n}=0}^{\infty} \frac{\mathrm{V}_{\mathrm{mn}}}{\mathrm{n}!} \mathrm{D}^{\mathrm{n}_{\mathrm{f}}(\mathrm{x})} \tag{V}
\end{equation*}
$$

Remarks. The same ideas in (*) show that the generating function of the moments of the inverse operator
[Continued on page 84.]

