ON THE LENGTH OF THE EUCLIDEAN ALGORITHM

E. P. MERKES and DAVID MEYERS University of Cincinnati, Cincinnati, Ohio

Throughout this article let a and b be integers, $\mathrm{a}>\mathrm{b}>0$. The Euclidean algorithm generates finite sequences of nonnegative integers,

$$
\left\{q_{j}\right\}_{j=1}^{n} \quad \text { and } \quad\left\{r_{j}\right\}_{j=1}^{n}
$$

such that

$$
\begin{array}{ll}
\mathrm{a}=\mathrm{q}_{1} \mathrm{~b}+\mathrm{r}_{1}, & 0<\mathrm{r}_{1}<\mathrm{b}, \\
\mathrm{~b}=\mathrm{q}_{2} \mathrm{r}_{1}+\mathrm{r}_{2}, & 0<\mathrm{r}_{2}<\mathrm{r}_{1}, \\
\mathrm{r}_{1}=\mathrm{q}_{3} \mathrm{r}_{2}+\mathrm{r}_{3}, & 0<\mathrm{r}_{3}<\mathrm{r}_{2},
\end{array}
$$

(1)

$$
\begin{array}{cc}
r_{n-3}=q_{n-1} r_{n-2}+r_{n-1}, & 0<r_{n-1}<r_{n-2} \\
r_{n-2}=q_{n} r_{n-1}+r_{n}, & r_{n}=0
\end{array}
$$

The integers r_{n-1} is the greatest common divisor of a and b and $q_{n} \geq 2$.
Define $\ell(\mathrm{a}, \mathrm{b})$ to be the number of divisions n in the algorithm (1). Some basic properties of $\ell(\mathrm{a}, \mathrm{b})$ are

$$
\begin{equation*}
\ell(\mathrm{a}, \mathrm{a})=1 \text {; } \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\ell(\mathrm{ac}, \mathrm{bc})=\ell(\mathrm{a}, \mathrm{~b}), \quad \mathrm{c}>0 ; \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\ell(\mathrm{a}+\mathrm{b}, \mathrm{~b})=\ell(\mathrm{a}, \mathrm{~b}) ; \tag{iii}
\end{equation*}
$$

(iv)

$$
\ell(a+b, a)=1+\ell(a, b) .
$$

Each of these properties is proved directly from the definition (1). Property (ii) permits us to assume a and b are relatively prime.

This paper is concerned with maximizing $l(a, b)$ when the integers a and b are drawn from certain subclasses of positive integers. There are some classical results in this direction such as the theorem of Lamé [3, p. 43] which states that $\ell(\mathrm{a}, \mathrm{b})$ is never greater than five times the number of digits in b. We begin with a known result, the proof of which is instrumental for the justification of the main theorem of the paper.

Theorem 1. Let $\left\{F_{j}\right\}$ be the Fibonacci sequence generated by
(2) $\quad F_{j+2}=F_{j+1}+F_{j}, \quad F_{-1}=0, \quad F_{0}=1 \quad(j=-1,0,1,2, \cdots)$.

Ecitorial note: This is not our standerd ribonecci secuenco.

If $a<F_{m+1}$ or $b<F_{m}$ for some integer $m>0$, then $\ell(a, b)<\ell\left(F_{m+1}, F_{m}\right)=m$.
Proof. From (1) the rational number a / b has a continued fraction expansion

$$
\begin{equation*}
\frac{a}{b}=q_{1}+\frac{1}{q_{2}}+\frac{1}{q_{3}}+\cdots+\frac{1}{q_{n}}, \quad 0<q_{j} \quad(1 \leq j<n), \quad q_{n} \geq 2 \tag{3}
\end{equation*}
$$

The $k^{\text {th }}$ numerator A_{k} and the $k^{\text {th }}$ denominator B_{k} of this continued fraction are determined from the equations

$$
\begin{equation*}
A_{k}=q_{k} A_{k-1}+A_{k-2}, \quad B_{k}=q_{k} B_{k-1}+B_{k-2} \quad(k=1,2, \cdots, n) \tag{4}
\end{equation*}
$$

where

$$
A_{0}=1, \quad B_{0}=0, A_{1}=q_{1}, \quad B_{1}=1 \quad[2, p .3]
$$

Since $q_{k}>0$ for each index $k \leq n$, it follows from (4) that

$$
A_{k}>A_{k-1}, \quad B_{k}>B_{k-1} \quad(k=2,3, \cdots, n)
$$

Moreover, by (1) and (4) we have $a \geq A_{n}, b \geq B_{n}$.
Suppose a and b are integers for which $n=\ell(a, b) \geq m$. Since $q_{k} \geq 1(1 \leq k \leq n)$, we have $A_{0}=F_{0}, A_{1} \geq F_{1}, \quad A_{2} \geq F_{1}+F_{0}=F_{2}$, and, in general,

$$
A_{k} \geq A_{k-1}+A_{k-2} \geq F_{k-1}+F_{k-2}=F_{k} \quad(1<k<n)
$$

Finally, since $q_{n} \geq 2$, we have by (2)

$$
A_{n} \geq 2 A_{n-1}+A_{n} \geq 2 F_{n-1}+F_{n-2}=F_{n-1}+F_{n}=F_{n+1}
$$

Similarly, $\mathrm{B}_{\mathrm{k}} \geq \mathrm{F}_{\mathrm{k}-1}(1 \leq \mathrm{k}<\mathrm{n})$ and $\mathrm{B}_{\mathrm{n}} \geq \mathrm{F}_{\mathrm{n}}$. Furthermore, $\mathrm{A}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}+1}$ if and only if $q_{k}=1(1 \leq k<n), q_{n}=2$ and $B_{n}=F_{n}$ if and only if $q_{k}=1(1<k<n), q_{n}=2$. Since $a \geq A_{n} \geq F_{n+1} \geq F_{m+1}$ and $b \geq B_{n} \geq F_{n} \geq F_{m}$, we have the contrapositive of the first part of the implication in the statement of the theorem proved. The fact that $\ell\left(\mathrm{F}_{\mathrm{m}} \mathrm{m}\right.$, F_{m}) $=m$ is a consequence of the statements concerning equality of A_{m} and B_{m} with F_{m+1} and F_{m}, respectively [1].

The ordered pairs of integers (a, b) can be partially ordered by defining (a, b) α ($\mathrm{a}^{\prime}, \mathrm{b}^{\prime}$) if $\mathrm{a} \leq \mathrm{a}^{\prime}$ and $\mathrm{b} \leq \mathrm{b}^{\prime}$. Relative to this partial order, the theorem states, in particular, that $\left(F_{m+1}, F_{m}\right)$ is the "first" pair for which $\ell(a, b)=m$, i.e., if $\left(a^{\prime}, b^{\prime}\right) \alpha\left(F_{m+1}, F_{m}\right)$, then $\ell\left(a^{\prime}, b^{\prime}\right)<\ell\left(F_{m+1}, F_{m}\right)$ unless $a^{\prime}=F_{m+1}$ and $b^{\prime}=F_{m}$.

The proofs of our next results are dependent on the following known lemma.
Lemma 1. $\quad F_{p+q}=F_{p} F_{q}+F_{p-1} F_{q-1} \quad(p, q=1,2, \cdots)$ 。
Proof. Set $S_{p, q}=F_{p} F_{q}+F_{p-1} F_{q-1}$. Then by (2)

$$
S_{p, q}=\left(F_{p-1}+F_{p-2}\right) F_{q}+F_{p-1} F_{q-1}=F_{p-1} F_{q+1}+F_{p-2} F_{q}=S_{p-1, q+1}
$$

Repeated application of this identity yields

$$
S_{p, q}=S_{1, q+p-1}=F_{1} F_{p+q-1}+F_{0} F_{p+q-2}=F_{p+q}
$$

Corollary (Lamé). If m is the number of digits in the integer b , then $\ell(\mathrm{a}, \mathrm{b}) \leq 5 \mathrm{~m}$. Proof. We first show $\mathrm{F}_{5 \mathrm{n}+1}>10^{\mathrm{n}}$ by induction. For $\mathrm{n}=1, \mathrm{~F}_{6}=13>10$. If the inequality is valid for an integer n, then by Lemma 1

$$
\mathrm{F}_{5 \mathrm{n}+6}=\mathrm{F}_{5 \mathrm{n}+1} \mathrm{~F}_{5}+\mathrm{F}_{5 \mathrm{n}} \mathrm{~F}_{4}>8 \cdot 10^{\mathrm{n}}+\frac{5}{2} 10^{\mathrm{n}}=\frac{21}{2} 10^{\mathrm{n}}>10^{\mathrm{n}+1}
$$

since

$$
\mathrm{F}_{5 \mathrm{n}}>\frac{1}{2} \mathrm{~F}_{5 \mathrm{n}+1}
$$

Thus, the inequality is valid for all integers.
Now if b has m digits, then $\mathrm{b}<10^{\mathrm{m}}$ and, hence, $\mathrm{b}<\mathrm{F}_{5 \mathrm{~m}+1}$. By Theorem 1 it follows that $\ell(\mathrm{a}, \mathrm{b})<5 \mathrm{~m}+1$ and Lamé theorem is proved.

It is interesting to observe that equality is possible in Lamé theorem if $\mathrm{b}<10^{3}$. If b has four digits, then $b<F_{20}=10946$ and, by Theorem 1 , $\quad \ell(a, b)<\ell\left(F_{21}, F_{20}\right)=20$. More generally, equality cannot hold in the Corollary for $\mathrm{m}>3$. Indeed, by Lemma 1 and the argument used in the proof of the corollary, we have $\mathrm{F}_{\mathrm{p}}>10^{\mathrm{k}}$ implies $\mathrm{F}_{\mathrm{p}+5}>10^{\mathrm{k}+1}$. Since $\mathrm{F}_{20}>10^{4}$, it follows that $\mathrm{F}_{5 \mathrm{~m}}>10^{\mathrm{m}}$ for $\mathrm{m} \geq 4$. If $\mathrm{b}<10^{\mathrm{m}}(\mathrm{m} \geq 4)$, then

$$
\ell(\mathrm{a}, \mathrm{~b})<\ell\left(\mathrm{F}_{5 \mathrm{~m}+1}, \mathrm{~F}_{5 \mathrm{~m}}\right)=5 \mathrm{~m} .
$$

The next problem considered in this article pertains to the number of distinct pairs (a, b) such that

$$
\left(\mathrm{F}_{\mathrm{m}+1}, \mathrm{~F}_{\mathrm{m}}\right) \alpha(\mathrm{a}, \mathrm{~b}) \alpha\left(\mathrm{F}_{\mathrm{m}+2}, \mathrm{~F}_{\mathrm{m}+1}\right)
$$

and $\ell(a, b)=m$. We prove there are $m+1$ such pairs and obtain formulas for the integers a and b that comprise the pairs. It is convenient to establish these results from a sequence of lemmas.

Lemma 2. Let the Euclidean algorithm for a and b, a and b are relatively prime, be (1) where for some integer $m(1<m<n)-q_{m}=2$ and $q_{k}=1(k \neq m, 1 \leq k<n)$, $q_{n}=2$. Then

$$
a=F_{n+1}+F_{n-m+1} F_{m-1}
$$

and

$$
b=F_{n}+F_{n-m+1} F_{m-2}
$$

Moreover, $\quad(a, b) \alpha\left(F_{n+2}, F_{n+1}\right)$.

Proof. From the proof of Theorem 1, we have that the $\mathrm{k}^{\text {th }}$ numerator and denominator of the continued fraction expansion for a / b when $\ell(a, b)=n$ satisfy, for $k<m$, the conditions $A_{k}=F_{k}, B_{k}=F_{k-1}$. From this fact and (4), we have

$$
\begin{gathered}
A_{m}=2 F_{m-1}+F_{m-2}=F_{m}+F_{m-1}=F_{m}+F_{0} F_{m-1} \\
B_{m}=2 F_{m-2}+F_{m-3}=F_{m-1}+F_{m-2}=F_{m-1}+F_{0} F_{m-2} \\
A_{m+1}=\left(F_{m}+F_{m-1}\right)+F_{m-1}=F_{m+1}+F_{1} F_{m-1} \\
B_{m+1}=\left(F_{m-1}+F_{m-2}\right)+F_{m-2}=F_{m}+F_{1} F_{m-2}
\end{gathered}
$$

Thus, by induction, we obtain

$$
\begin{aligned}
& A_{n-1}=F_{n-1}+F_{m-1} F_{n-m-1} \\
& B_{n-1}=F_{n-2}+F_{m-2} F_{n-m-1}
\end{aligned}
$$

Finally, by (4) and these formulas,

$$
A_{n}=2 F_{n-1}+F_{n-2}+\left(2 F_{n-m+1}+F_{n-m-2}\right) F_{m-1}=F_{n+1}+F_{n-m+1} F_{m-1}
$$

and, similarly, $B_{n}=F_{n}+F_{n-m+1} F_{m-2}$. Therefore, $a=A_{n}$ and $b=B_{n}$ and the first part of the lemma is proved.

Next, by Lemma 1, it follows that

$$
F_{n+1}<A_{n}=F_{n+1}+F_{n-m+1} F_{m-1}=F_{n+1}+F_{n}-F_{n-m} F_{m-2}<F_{n+2}
$$

and, similarly, $\mathrm{F}_{\mathrm{n}}<\mathrm{B}_{\mathrm{n}}<\mathrm{F}_{\mathrm{n}+1^{\circ}}$
This lemma gives us $n-2$ pairs ($m=2,3, \cdots, n-1$) of integers (a, b) such that

$$
\mathrm{F}_{\mathrm{n}+1}<\mathrm{a}<\mathrm{F}_{\mathrm{n}+2}, \quad \mathrm{~F}_{\mathrm{n}}<\mathrm{b}<\mathrm{F}_{\mathrm{n}+1}
$$

and $\ell(a, b)=n$. Since $\ell\left(F_{n+1}, F_{n}\right)$ and

$$
\ell\left(\mathrm{F}_{\mathrm{n}+2}, \mathrm{~F}_{\mathrm{n}}\right)=\ell\left(\mathrm{F}_{\mathrm{n}+1}+\mathrm{F}_{\mathrm{n}}, \mathrm{~F}_{\mathrm{n}}\right)=\ell\left(\mathrm{F}_{\mathrm{n}+1}, \mathrm{~F}_{\mathrm{n}}\right)=\mathrm{n},
$$

there are so far n pairs in the range

$$
\left(\mathrm{F}_{\mathrm{n}+1}, \mathrm{~F}_{\mathrm{n}}\right) \alpha(\mathrm{a}, \mathrm{~b}) \alpha\left(\mathrm{F}_{\mathrm{n}+2}, \mathrm{~F}_{\mathrm{n}+1}\right)
$$

for which $\ell(a, b)=n$. The fact that there exists only one additional such pair is proved by the next two lemmas.

Lemma 3. Let $q_{k}=1 \quad(k=1,2, \cdots, n-1), q_{n}=3$ in the Euclidean algorithm (1) for the relatively prime integers a and b. Then

$$
a=F_{n+1}+F_{n-1}, \quad b=F_{n}+F_{n-2}
$$

and

$$
\left(\mathrm{F}_{\mathrm{n}+1}, \mathrm{~F}_{\mathrm{n}}\right) \alpha(\mathrm{a}, \mathrm{~b}) \alpha\left(\mathrm{F}_{\mathrm{n}+2}, \mathrm{~F}_{\mathrm{n}+1}\right)
$$

If $q_{k} \geq 1(k=1,2, \cdots, n-1), q_{n}>3$, then the corresponding integers a and b obey the inequalities $a>F_{n+2}$ and $b>F_{n+1}$.

Proof. From the proof of Theorem 1, we have $A_{n-1}=F_{n-1}$ and $B_{n-1}=F_{n-2}$ when $q_{k}=1(1 \leq k<n)$. If $q_{n}=3$, then by (4),

$$
A_{n}=3 F_{n-1}+F_{n-2}=F_{n}+2 F_{n-1}=F_{n+1}+F_{n-1}
$$

and, similarly, $\mathrm{B}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}-2}$. Since $\mathrm{F}_{\mathrm{n}-2}<\mathrm{F}_{\mathrm{n}-1}<\mathrm{F}_{\mathrm{n}}$, we have

$$
a=A_{n}<F_{n+1}+F_{n}=F_{n+2}
$$

and

$$
\mathrm{b}=\mathrm{B}_{\mathrm{n}}<\mathrm{F}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}-1}=\mathrm{F}_{\mathrm{n}+1}
$$

Next, if $q_{k} \geq 1(1 \leq k<n)$ and $q_{n} \geq 4$, we have $A_{n-1} \geq F_{n-1}$ and $B_{n-1} \geq F_{n-2}$. By (4)

$$
\begin{aligned}
a & =A_{n} \geq 4 A_{n-1}+A_{n-2} \geq 4 F_{n-1}+F_{n-2} \\
& =F_{n+1}+2 F_{n-1}>F_{n+1}+F_{n}=F_{n+2}
\end{aligned}
$$

Similarly, $b=B_{n}>F_{n+1}$.
Lemma 4. Let the Euclidean algorithm for the integers a and b be (1), where $g_{k} \geq 2$ for at least three indices k or where $a_{p} \geq 2, q_{m} \geq 3$ for $I \leq p, m \leq n$, $\mathrm{p} \neq \mathrm{m}$. Then a $>\mathrm{F}_{\mathrm{n}+2}$.

Proof. Let $q_{k} \geq 2$ for $k=m, p(1 \leq m<p<n)$. Then, paralleling the proof of Lemma 2, we obtain

$$
\begin{equation*}
a \geq A_{n} \geq F_{n+1}+F_{n-m+1} F_{m-1}+F_{n-p+1} F_{p-1} \tag{5}
\end{equation*}
$$

Now the last expression is greater than $\mathrm{F}_{\mathrm{n}+2}$ provided

$$
\begin{equation*}
F_{n-m+1} F_{m-1}+F_{n-p+1} F_{p-1}>F_{n} \tag{6}
\end{equation*}
$$

Since

$$
\mathrm{F}_{\mathrm{n}-\mathrm{s}+1} \mathrm{~F}_{\mathrm{s}-1}>\frac{1}{2} \mathrm{~F}_{\mathrm{n}}
$$

for $1 \leq \mathrm{s} \leq \mathrm{n}$ by Lemma 1 , the inequality (6) is valid. We conclude from (5) that

$$
a \geq A_{n}>F_{n+1}+F_{n}=F_{n+2}
$$

If for some index $m, 1 \leq m<n$, we have $q_{m} \geq 3$, then $A_{k} \geq F_{k}$ for $k=1,2$, $\ldots, m-1$ and by (4)

$$
\begin{gathered}
A_{m} \geq 3 F_{m-1}+F_{m-2}=F_{m+1}+F_{m-1}>F_{m+1} \\
A_{m+1} \geq\left(F_{m+1}+F_{m-1}\right)+F_{m-1}>F_{m+1}+F_{m}=F_{m+2}
\end{gathered}
$$

By induction, $A_{k}>\mathrm{F}_{\mathrm{k}+1}$ for $\mathrm{m} \leq \mathrm{k}<\mathrm{n}$. Now

$$
A_{n} \geq 2 A_{n-1}+A_{n-2}>2 F_{n}+F_{n-1}=F_{n+2}
$$

so $\mathrm{a}>\mathrm{F}_{\mathrm{n}+2}$.
The final case to consider is when $q_{m}=2$ for some index $m, 1 \leq m<n$ and $q_{n} \geq$ 3. As in the proof of Lemma 2, it is easily shown that

$$
A_{k} \geq F_{k}+F_{m-1} F_{k-m} \quad(k=m, m+1, \cdots, n-1)
$$

Thus,

$$
\begin{aligned}
A_{n} & \geq 3 A_{n-1}+A_{n-2} \geq 3 F_{n-1}+F_{n-2}+\left(3 F_{n-m-1}+F_{n-m-2}\right) F_{m-1} \\
& \geq F_{n+1}+F_{n-1}+\left(F_{n-m+1}+F_{n-m-1}\right) F_{m-1}>F_{n+2} .
\end{aligned}
$$

provided

$$
F_{n-m+1} F_{m-1}+F_{n-m-1} F_{m-1}>F_{n-2}
$$

This is the case since, by Lemma 1,

$$
\mathrm{F}_{\mathrm{n}-\mathrm{s}+1} \mathrm{~F}_{\mathrm{s}-1}>\frac{1}{2} \mathrm{~F}_{\mathrm{n}}
$$

for $1 \leq \mathrm{s} \leq \mathrm{n}$ and, hence,

$$
\mathrm{F}_{\mathrm{n}-\mathrm{m}+1} \mathrm{~F}_{\mathrm{m}-1}+\mathrm{F}_{\mathrm{n}-\mathrm{m}-1} \mathrm{~F}_{\mathrm{m}-1}>\frac{1}{2}\left(\mathrm{~F}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}-2}\right)>\mathrm{F}_{\mathrm{n}-2}
$$

Therefore, $a>F_{n+2}$ in all cases considered in this Lemma.
Collecting the results in the last three lemmas, we have proved the following:
Theorem 2. Let \mathcal{A} be the set of ordered pairs (a, b) such that ($a, b) \alpha\left(F_{n+2}, F_{n+1}\right)$. There are exactly $n+1$ pairs in \mathcal{A} such that $\ell(a, b)=n$. These pairs are obtained from the formulas

$$
a=F_{n+1}+F_{n-m+1} F_{m-1}, \quad b=F_{n}+F_{n-m+1} F_{m-2}
$$

$(m=0,1,2, \cdots, n)$, where $F_{-2}=F_{-1}=0$ and F_{j} for each $j \geq 0$ is the j th Fibonacci number (2).

The results in Theorem 2 were suggested to the authors by considering a number of special cases on an IBM $360 / 65$ computer.

REFERENCES

1. R. L. Duncan, "Note on the Euclidean Algorithm," The Fibonacci Quarterly, Vol. 4 (1966), pp. 367-368.
2. O. Perron, Die Lehre von den Kettenbruchen, Vol. 1, Teubner, Stuttgart, 1954.
3. J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, 1939.

LETTERS TO THE EDITOR

Dear Editor:

In the paper (*) by W. A. Al-Salam and A. Verma, "Fibonacci Numbers and Eulerian Polynomials," Fibonacci Quarterly, February 1971, pp. 18-22, an error occurs in (9), which is readily corrected. I will generalize their (4) by defining a general polynomial operator M by
(I)

$$
\operatorname{Mf}(x)=A f\left(x+c_{1}\right)+\operatorname{Bf}\left(x+c_{2}\right), \quad c_{1} \neq c_{2}
$$

where $f(x)$ is a polynomial and A, B, c_{1}, and c_{2} are given numbers. With $D=d / d x$, we note that $M=A e^{C_{1} D}+B e^{C_{2} D}$ so that

$$
\operatorname{Mf}(x)=A \sum_{n=0}^{\infty} \frac{c_{1}^{n}}{n!} D^{n} f(x)+B \sum_{n=0}^{\infty} \frac{c_{2}^{n}}{n!} D^{n} f(x)
$$

or
(II)

$$
A f\left(x+c_{1}\right)+B f\left(x+c_{2}\right)=\sum_{n=0}^{\infty} \frac{W_{n}}{n!} D^{n_{f}(x)}
$$

where $W_{n}=A c_{1}^{n}+B c_{2}^{n}$ is the solution of $W_{n+2}=P W_{n+1}-Q W_{n}$ and $c_{1} \neq c_{2}$ are the roots of $x^{2}=P x-Q$. In (*), Eq. (4) is a special case of (I) with $A=\mu$ and $B=1-\mu$. There are two cases of (II) to consider:

Case 1. $\mathrm{A}+\mathrm{B} \neq 0$. If $\mathrm{A}=\mathrm{B}$, we obtain from (II)
(III)

$$
\mathrm{f}\left(\mathrm{x}+\mathrm{c}_{1}\right)+\mathrm{f}\left(\mathrm{x}+\mathrm{c}_{2}\right)=\sum_{\mathrm{n}=0}^{\infty} \frac{\mathrm{V}_{\mathrm{n}}}{\mathrm{n}!} D^{\mathrm{n}^{\prime}} \mathrm{f}(\mathrm{x})
$$

where $V_{0}=2, V_{1}=P$, and $V_{n+2}=P V_{n+1}-Q V_{n}$. If c_{1} and c_{2} are roots of $x^{2}=x+1$, [Continued on page 71.]

