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Throughout this art icle let a and b be integers , a > b > 0. The Euclidean algo-
rithm generates finite sequences of nonnegative integers , 

such that 

(1) 

{q}1 1 and 
J J = l 

a = qtb + rif 

b = q2ri + r2, 

* i = Q3r2 + r3, 

r n - 3 = q n - l r n - 2 + r n - l ' 
r 0 = q r n + r , n-2 n n-1 n 

0 

0 

0 

< 

< 

< 

0 

ur 3 3= 

r i < 

r2 < 

r3 < 

< r n 
r 
n 

1 

b , 

* i « 

^2 . 

< 
-1 
= 0 

r n - 2 

• 

The integers r _- is the greates t common divisor of a and b and q ^ 2. 
Define I(a, b) to be the number of divisions n in the algorithm (1). Some basic prop-

er t ies of i(a,b) a re 

(i) i (a,a) = 1 ; 

(ii) i(ac,bc) = i (a ,b) , c > 0 ; 

(iii) i(a + b,b) = i(a,b) ; 

(iv) I (a + b,a) = 1 + i(a,b) . 

Each of these propert ies is proved directly from the definition (1). Property (ii) permits us 
to assume a and b are relatively pr ime. 

This paper is concerned with maximizing i(a,b) when the integers a and b are drawn 
from certain subclasses of positive integers. There are some classical resul ts in this d i -
rection such as the theorem of Lame [3, p. 43] which states that i (a ,b ) is never greater 
than five times the number of digits in b. We begin with a known resul t , the proof of which 
is instrumental for the justification of the main theorem of the paper. 

Theorem 1. Let { F . } be the Fibonacci sequence generated by 

(2) Fj+2 = FJ+1 + F., F^ = 0, FQ = 1 (j = -1, 0, 1, 2, •••) . 
Editorial notes This is not our standard Fibonacci sequence. 
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If a < F m + 1 o r b < F m for some integer m > 0, then i(a,b) < i(F + 1 , F ) = m. 
Proof. From (1) the rational number a/b has a continued fraction expansion 

(3) B - * + £ + £ + - + £ . 0<*, &*!<">. ^ 2 . 

The k numerator A, and the k denominator B. of this continued fraction a re de te r -
mined from the equations 

( 4 ) A k = \ A k - l + A k - 2 ' B k = \Bk-l + B k -2 * = 1, 2, •• • , n) , 

where 
A0 = 1, B0 = 0, A4 = qls Bt = 1 [2 , p. 3 ] . 

Since q, > 0 for each index k ^ n5 it follows from (4) that 

\ > A k - r B k > B k - i * - 2 . 3 . - t n ) . 

Moreover, by (1) and (4) we have a ^ A , b ^ B . J n n 
Suppose a and b are integers for which n = i(a,b) — m. Since q, — 1 (1 ^ k ^ n), 

we have A0 = F 0 , Aj ^ F i , A2 ^ Ft + F0 = F 2 , and, in general, 

A k £ A k - 1 + A k - 2 * F k - 1 + F k - 2 = F k (1 < k < n) . 

Finally, since q ^ 2 , we have by (2) 

A > 2 A - + A ^ 2F - + F 0 = F - + F = F _ L l . n n-1 n n-1 n-2 n -1 n n+1 

Similarly, B, ^ F, - (1 ^ k < n) and B ^ F . Fur thermore , A = F ,- if and only if J k k -1 n n n n+1 
a = 1 (1 ^ k < n), q = 2 and B = F if and only if q, = 1 (1 < k < n), qn = 2. 
Since a ^ A ^ F , . - F , - and b ^ B ^ F ^ F , we have the contrapositive of the n n+1 m+1 n n m 
first par t of the implication in the statement of the theorem proved, The fact that i(F -
F ) = m is a consequence of the statements concerning equality of A and B with F -
and F , respectively [ l ] . 

The ordered pai rs of integers (a,b) can be partially ordered by defining (a, b)#(aT ,bf) 
if a ^ a? and b ^ bf . Relative to this partial order , the theorem sta tes , in part icular , that 
(F + 1 , F ) is the "first" pair for which I(a,b) = m, i. e , , if (a!, b')»(F + 1 , F ), then 
i ( a ! , b f ) < i(F , - , F ) unless a? = F ,- and bf = F . 

m+1 m m+1 m 
The proofs of our next resul ts are dependent on the following known lemma. 
Lemma 1. F , = F F + F . F - (p,q = 1,2,- ••) . — P+c3 P q p-1 q-1 
Proof. Set S = F F + F , F -. Then by (2) p ,q p q p -1 q-1 

S = ( F + F ) F + F F = F F + F F = S 
p ,q p -1 p-2 q p -1 q-1 p -1 q+1 p-2 q p - l , q + l 
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Repeated application of this identity yields 

S = S = F F + F F = F 
p ,q l , q+p - l 1 p+q-1 0 p+q-2 p+q 

Corollary (Lame). If m is the number of digits in the integer b , then i(a,b) ^ 5m. 
Proof. We first show F 5 n + 1 > 10n by induction. For n = 1, F 6 = 13 > 10, If the 

inequality is valid for an integer n, then by Lemma 1 

F* ^ = F^ ^ F . + F r F . > 8.10n + -I 10n = ^ 10n > 1 0 n + 1 
5n+6 5n+l 5 bn 4 2 2 

since 

TT > I r 
r 5n 2 r 5n+l ' 

Thusj the inequality is valid for all integers. 
Now if b has m digits, then b < 10 and, hence, b < F g m + 1 > By Theorem 1 it 

follows that i(a,b) < 5m + 1 and Lame theorem is proved. 
It i s interesting to observe that equality is possible in Lame theorem if b < 103. If b 

has four digits, then b < F20 = 10946 and, by Theorem 1, i(a,b) < i (F 2 1 ,F 2 0 ) = 20. 
More generally, equality cannot hold in the Corollary for m > 3. Indeed, by Lemma 1 and 
the argument used in the proof of the corollary, we have F > 10 implies F _ > 10 
Since F20 > 104, it follows that F 5 m > 1 0 m for m ^ 4. If b < 1 0 m (m ^ 4), then 

i(a,b) < i ( F r x 1 , F c ) = 5m . s 5m+l 5m 

The next problem considered in this article pertains to the number of distinct pa i rs 
(a, b) such that 

(F _,_-, F )a(afb)Qf(F ^ F ^ ) 
m+1 m m+2 m+1 

and i(a,b) = m. We prove there are m + 1 such pairs and obtain formulas for the integers 
a and b that comprise the pai rs . It is convenient to establish these resul ts from a sequence 
of lemmas. 

Lemma 2. Let the Euclidean algorithm for a and b , a and b a re relatively pr ime, 
be (1) where for some integer m (1 < m < n) - q = 2 and q, = 1 (k f m, 1 ^ k < n), 
q = 2 . Then Mn 

and 
a ~ F n+1 + F n - m + l F m - l 

b = F + F _ F Q . 
n n-m+1 m-2 

Moreover, (a,b)<*(F .9> F . - ) . 
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Proof. From the proof of Theorem 1, we have that the k numerator and denomina-
tor of the continued fraction expansion for a /b when i(a,b) = n satisfy, for k < m, the 
conditions A k = Fk> B k = F

k _ r From this fact and (4), we have 

A = 2 F - + F 0 = F + F - = F + Ff tF - , m m - 1 m-2 m m - 1 m 0 m - 1 
B m = 2 F m - 2 + F m - 3 = F m - 1 + F m - 2 = F m - 1 + F 0 F m - 2 • 

A m+1 = ( F m + ^ - l * + F m - 1 = F m + 1 + F l F m - l > 
B - L l = ( F i + F o ) + F o = F + F i F o • 

m+1 m - 1 m-2 m-2 m 1 m-2 

Thus, by induction, we obtain 

A 1 = F n + F n F - , 
n -1 n -1 m - 1 n - m - 1 

B - = F 0 + F 0 F n . 
n -1 n-2 m-2 n - m - 1 

Finally, by (4) and these formulas, 

A = 2F , + F 0 + (2F _ + F 0 ) F - = F _,, + F _ F -
n n-1 n-2 n-m+1 n-m-2 m - 1 n+1 n-m+1 m - 1 

and, s imilarly, B = F + F , -F 0 . Therefore, a = A and b = B and the first ' J n n n-m+1 m-2 n n 
par t of the lemma is proved. 

Next, by Lemma 1, it follows that 

F , < A = F _ L l + F ^ F 1 = F _ L 1 + F - F F 0
< F _ ! _ 0 n+1 n n+1 n-m+1 m - 1 n+1 n n-^m m-2 n+2 

and, similarly, FR < BR < FR+r 

This lemma gives us n - 2 pai rs (m = 2, 3, * • • , n - 1) of integers (a,b) such that 

F ^ < a < F _^, F < b < F ^ , n+1 n+2? n n+1 

and i(a,b) = n. Since ^ ( F
n + 1 * F

n ) and 

i ( Fn+2> Fn> = i ( F n + l + Fn> V = i ( F n + l > V = n> 

there a re so far n pa i rs in the range 

(F _,,, F )a(a,b)a(F ^ , F _,, ) n+lJ n ' n+2' n+1 

for which i(a,b) = n. The fact that there exists only one additional such pair i s proved by 
the next two lemmas. 
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Lemma 3. Let q, = 1 (k = 1, 2, ° • • , n - 1), q = 3 in the Euclidean algorithm 
(1) for the relatively prime integers a and b. Then 

and 
a = F ,- + F - , b = F + F 0 , 

n+1 n-1 n n-2 

< W F n ) a ( a , b M F n + 2 J F n + 1 ) . 

If q. ^ 1 (k = 1, 2, • • • , n - 1), q > 3, then the corresponding integers a and b obey 
K n 

the inequalities a > F „ and b > F - . 
Proof. From the proof of Theorem 1, we have A - = F - and B . = F 0 when * n -1 n -1 n-1 n-2 

qk = 1 (1 ^ k < n). If qn = 3, then by (4), 

A = 3 F 1 + F Q = F + 2F 1 = F _ L l + F -n n -1 n-2 n n-1 n+1 n -1 

and, similarly, B = F + F n . Since F 0 < F - < F , we 9 J9 n n n-2 n-2 n -1 n ' have 

and 

By (4) 

a = A < F _ L 1 + F = F _ L O n n+1 n n+2 

b = B < F + F . = F ^- . n n n -1 n+1 

Next, if q. ^ 1 (1 ^ k < n) and q ^ 4, we have A > F 1 and B 1 ^ F 9 . 
K. n n—x n—i. n—x n—u 

a = A ^ 4A - + A 0 ^ 4 F - + F „ n n - 1 n-2 n -1 n-2 
= F + 2 F > F + F = F 

n+1 n-1 n+1 * n n+2 ' 

Similarly, b = B n > F n + r 

Lemma 4. Let the Euclidean algorithm for the integers a and b be (1), where q, > 2 
f o r a t l e a s t t h r e e i n d i c e s k err w h e r e q > 2 , q > 3 f o r 1 < p m < n 
p f m. Then a > F ^ ^ o -

Proof. Let qk > 2 for k = m, p (1 < m < p < n). Then, paralleling the proof of 
Lemma 2, we obtain 

(5) a ^ A > F ^ + F F + F F 
n n+1 n-m+1 m - 1 n-p+1 p-1 " 

Now the las t expression is grea ter than F provided 
n+£« 

(6) F ,- F , + F . F > F . 
n-m+1 m - 1 n-p+1 p -1 n 

Since ± 
Fn-s+lVl > 2 F n 
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for 1 < s ^ n by Lemma 1, the inequality (6) is valid. We conclude from (5) that 

a > A > F , - + F = F | 0 , n n+1 n n+2 

If for some index m, 1 ^ m ^ n, we have q ^ 3 , then A. ^ F. for k = 1, 2, 
m K. K. 

• ° • , m - 1 and by (4) 

A > 3 F -, + F 0 = F _ L i + F i > F _ L l S m m - 1 m-2 m+1 m - 1 m+1 
A ^ (F + F ) + F > F + F = F 

m+1 v m+1 m - r m - 1 m+1 m m+2 e 

By inductionj A, > F. - for m ^ k < n. Now 

A > 2 A , + A 0 > 2 F + F 1 = F _ L O n n-1 n-2 n n-1 n+2 
so a > F J 0 . 

n+2 
The final case to consider is when q = 2 for some index m, 1 ^ m < n and q ^ 

Mm Mn 
38 A s in the p roof of L e m m a 2? i t i s e a s i l y shown tha t 

Thus, 

provided 

A, ^ F. + F - F. (k = m, m + 1, ' •e , n - 1) . 
k k m - 1 k-m 

A > 3A - + A 0 > 3F 1 + F 0 + (3F - + F 0 )F n 
n n-1 n-2 n-1 n-2 n - m - 1 n-m-2 m - 1 

> F + F + ( F + F )F > F 
~~ n+1 n-1 l n-m+1 n - m - 1 f r m - 1 n+2 * 

F j n F -, + F - F > F „ 
n-m+1 m - 1 n - m - 1 m - 1 n-2 

This i s the case since, by Lemma 1, 

F F > I F 
n-s+1 s~l 2 n 

for 1 < s ^ n and, hence, 

F F + F F > — (F + F ) > F 
r n-m+1 m - 1 n - m - 1 m - 1 2 K n n - 2 ; n-2 

Therefore, a > F ? in all cases considered in this Lemma. 
Collecting the resul ts in the last three lemmas , we have proved the following: 
Theorem 2. Let h> be the set of ordered pairs (a,b) such that (a,b)»(F $F - ) . 

There are exactly n + 1 pai rs in E such that i(a,b) = n. These pai rs are obtained from 
the formulas 

a = F n+1 + F n - m + l Fm-1> b = F n + F n - m + l F m - 2 
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" 3 
(m = 0, 1, 2, ••• , n), where F 0 = F 1 = 0 and F . for each j > 0 is the j Fibon-

-A - 1 1 
acci number (2). 

The resul ts in Theorem 2 were suggested to the authors by considering a number of 
special cases on an IBM 360/65 computer. 
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LETTERS TO THE EDITOR 

Dear Editor: 
In the paper (*) by W. A. Al-Salam and A. Verma, "Fibonacci Numbers and Eulerian 

Polynomials ," Fibonacci Quarterly, February 1971, pp. 18-22, an e r r o r occurs in(9), which 
is readily corrected. I will generalize their (4) by defining a general polynomial operator 
M by 
(I) Mf(x) = Af(x + ct) + Bf(x + c 2 ) , ct £ c2 , 

where f(x) is a polynomial and A, B, cl9 and c2 are given numbers. With D = d/dx, 
we note that M = A e ° l D + Be° 2 D so that 

QO n OO n 

Mf(x) = A J^ nT ^ W + B 2 nT D*f(x) ' 
n=0 n=0 

or 
OO 

W 
(II) Af(x + C l ) + Bf(x + c2) = J^ -£ Dnf(x) , 

n=0 

where W = Ac* + Bc2 is the solution of W i r = PW ,- - QW and c4 ^ c2 are the roots n 1 L n+2 n+1 ^ n \ T- L 

of x2 = Px - Q. In (*), Eq. (4) is a special case of (I) with A = fi and B = 1 -1±, There 
are two cases of (II) to consider: 

Case 1. A + B / 0 , If A = B, we obtain from (II) 

v 
(III) f(x + C l ) + f(x + c2) = 2 -5? D l l f ( x ) > 

V_ 

n=0 

where V0 = 2, Vi = P , and V ,n = PV ,- - QV . If Cj and c2 are roots of x2 = x + 1, u » i n+2 n+1 n -1 * 
[Continued on page 71. ] 


