ON THE LENGTH OF THE EUCLIDEAN ALGORITHM

E. P. MERKES and DAVID MEYERS University of Cincinnati, Cincinnati, Ohio

Throughout this article let a and b be integers, a > b > 0. The Euclidean algorithm generates finite sequences of nonnegative integers,

$$\{q_j\}_{j=1}^n \text{ and } \{r_j\}_{j=1}^n$$

$$a = q_1 b + r_1, \quad 0 \le r_1 \le b,$$

$$b = q_2 r_1 + r_2, \quad 0 \le r_2 \le r_1,$$

$$r_1 = q_3 r_2 + r_3, \quad 0 \le r_3 \le r_2,$$

$$\dots$$

(1)

such that

$$\mathbf{r}_{n-3} = \mathbf{q}_{n-1}\mathbf{r}_{n-2} + \mathbf{r}_{n-1}, \qquad 0 < \mathbf{r}_{n-1} < \mathbf{r}_{n-2}$$
$$\mathbf{r}_{n-2} = \mathbf{q}_n\mathbf{r}_{n-1} + \mathbf{r}_n, \qquad \mathbf{r}_n = 0$$

The integers r_{n-1} is the greatest common divisor of a and b and $q_n \ge 2$.

Define l(a, b) to be the number of divisions n in the algorithm (1). Some basic properties of l(a, b) are

(i)
$$\ell(a, a) = 1;$$

(ii)
$$\ell(ac, bc) = \ell(a, b), \quad c > 0;$$

(iii)
$$\ell(a + b, b) = \ell(a, b);$$

(iv)
$$\ell(a + b, a) = 1 + \ell(a, b)$$
.

Each of these properties is proved directly from the definition (1). Property (ii) permits us to assume a and b are relatively prime.

This paper is concerned with maximizing l(a,b) when the integers a and b are drawn from certain subclasses of positive integers. There are some classical results in this direction such as the theorem of Lamé [3, p. 43] which states that l(a,b) is never greater than five times the number of digits in b. We begin with a known result, the proof of which is instrumental for the justification of the main theorem of the paper.

<u>Theorem 1.</u> Let $\{F_i\}$ be the Fibonacci sequence generated by

(2) $F_{j+2} = F_{j+1} + F_j$, $F_{-1} = 0$, $F_0 = 1$ $(j = -1, 0, 1, 2, \cdots)$. Editorial note: This is not our standard Fibonacci sequence. Feb. 1973

If $a \leq F_{m+1}$ or $b \leq F_m$ for some integer m > 0, then $\ell(a,b) \leq \ell(F_{m+1},F_m) = m$. <u>Proof.</u> From (1) the rational number a/b has a continued fraction expansion

(3)
$$\frac{a}{b} = q_1 + \frac{1}{q_2} + \frac{1}{q_3} + \cdots + \frac{1}{q_n}$$
, $0 < q_j$ $(1 \le j < n)$, $q_n \ge 2$.

The k^{th} numerator A_k and the k^{th} denominator B_k of this continued fraction are determined from the equations

(4)
$$A_k = q_k A_{k-1} + A_{k-2}, \quad B_k = q_k B_{k-1} + B_{k-2} \quad (k = 1, 2, \dots, n),$$

where

$$A_0 = 1, B_0 = 0, A_1 = q_1, B_1 = 1$$
 [2, p. 3].

Since $q_k > 0$ for each index $k \le n$, it follows from (4) that

$$A_k > A_{k-1}, \quad B_k > B_{k-1}$$
 (k = 2, 3, ..., n).

Moreover, by (1) and (4) we have $a \ge A_n$, $b \ge B_n$.

Suppose a and b are integers for which $n = \ell(a, b) \ge m$. Since $q_k \ge 1$ $(1 \le k \le n)$, we have $A_0 = F_0$, $A_1 \ge F_1$, $A_2 \ge F_1 + F_0 = F_2$, and, in general,

$$A_k \ge A_{k-1} + A_{k-2} \ge F_{k-1} + F_{k-2} = F_k$$
 (1 < k < n)

Finally, since $q_n \ge 2$, we have by (2)

$$A_n \ge 2A_{n-1} + A_n \ge 2F_{n-1} + F_{n-2} = F_{n-1} + F_n = F_{n+1}$$
.

Similarly, $B_k \ge F_{k-1}$ $(1 \le k \le n)$ and $B_n \ge F_n$. Furthermore, $A_n = F_{n+1}$ if and only if $q_k = 1$ $(1 \le k \le n)$, $q_n = 2$ and $B_n = F_n$ if and only if $q_k = 1$ $(1 \le k \le n)$, $q_n = 2$. Since $a \ge A_n \ge F_{n+1} \ge F_{m+1}$ and $b \ge B_n \ge F_n \ge F_m$, we have the contrapositive of the first part of the implication in the statement of the theorem proved. The fact that $\ell(F_{m+1}, F_m) = m$ is a consequence of the statements concerning equality of A_m and B_m with F_{m+1} and F_m , respectively [1].

The ordered pairs of integers (a,b) can be partially ordered by defining (a,b) $\alpha(a',b')$ if $a \le a'$ and $b \le b'$. Relative to this partial order, the theorem states, in particular, that (F_{m+1}, F_m) is the "first" pair for which $\ell(a,b) = m$, i.e., if $(a', b')\alpha(F_{m+1}, F_m)$, then $\ell(a',b') \le \ell(F_{m+1},F_m)$ unless $a' = F_{m+1}$ and $b' = F_m$.

The proofs of our next results are dependent on the following known lemma.

$$\underbrace{\text{Lemma 1.}}_{\text{Proof. Set S}} \quad F_{p+q} = F_{p}F_{q} + F_{p-1}F_{q-1} \quad (p,q = 1,2,\cdots) .$$

$$\underbrace{\text{Proof. Set S}}_{p,q} = F_{p}F_{q} + F_{p-1}F_{q-1}. \quad \text{Then by (2)}$$

$$\underbrace{\text{S}}_{p,q} = (F_{p-1} + F_{p-2})F_{q} + F_{p-1}F_{q-1} = F_{p-1}F_{q+1} + F_{p-2}F_{q} = S_{p-1,q+1}.$$

ON THE LENGTH OF THE EUCLIDEAN ALGORITHM

Repeated application of this identity yields

$$S_{p,q} = S_{1,q+p-1} = F_1F_{p+q-1} + F_0F_{p+q-2} = F_{p+q}$$
.

<u>Corollary (Lame)</u>. If m is the number of digits in the integer b, then $l(a,b) \leq 5m$. <u>Proof</u>. We first show $F_{5n+1} > 10^n$ by induction. For n = 1, $F_6 = 13 > 10$. If the inequality is valid for an integer n, then by Lemma 1

$$F_{5n+6} = F_{5n+1}F_5 + F_{5n}F_4 \ge 8 \cdot 10^n + \frac{5}{2} 10^n = \frac{21}{2} 10^n \ge 10^{n+1}$$

since

$$F_{5n} > \frac{1}{2} F_{5n+1}$$
.

Thus, the inequality is valid for all integers.

Now if b has m digits, then $b \le 10^{m}$ and, hence, $b \le F_{5m+1}$. By Theorem 1 it follows that $\ell(a,b) \le 5m + 1$ and Lamé theorem is proved.

It is interesting to observe that equality is possible in Lamé theorem if $b < 10^3$. If b has four digits, then $b < F_{20} = 10946$ and, by Theorem 1, $\ell(a,b) < \ell(F_{21},F_{20}) = 20$. More generally, equality cannot hold in the Corollary for m > 3. Indeed, by Lemma 1 and the argument used in the proof of the corollary, we have $F_p > 10^k$ implies $F_{p+5} > 10^{k+1}$. Since $F_{20} > 10^4$, it follows that $F_{5m} > 10^m$ for $m \ge 4$. If $b < 10^m$ ($m \ge 4$), then

$$\ell(a,b) \leq \ell(F_{5m+1}, F_{5m}) = 5m$$
.

The next problem considered in this article pertains to the number of distinct pairs (a,b) such that

$$(\mathbf{F}_{m+1}, \mathbf{F}_{m})\alpha(\mathbf{a}, \mathbf{b})\alpha(\mathbf{F}_{m+2}, \mathbf{F}_{m+1})$$

and l(a,b) = m. We prove there are m + 1 such pairs and obtain formulas for the integers a and b that comprise the pairs. It is convenient to establish these results from a sequence of lemmas.

Lemma 2. Let the Euclidean algorithm for a and b, a and b are relatively prime, be (1) where for some integer m $(1 \le m \le n) - q_m = 2$ and $q_k = 1$ $(k \ne m, 1 \le k \le n)$, $q_n = 2$. Then

$$a = F_{n+1} + F_{n-m+1}F_{m-1}$$

 $b = F_n + F_{n-m+1}F_{m-2}$.

Moreover, $(a,b)\alpha(F_{n+2}, F_{n+1})$.

and

<u>Proof.</u> From the proof of Theorem 1, we have that the k^{th} numerator and denominator of the continued fraction expansion for a/b when $\ell(a,b) = n$ satisfy, for $k \le m$, the conditions $A_k = F_k$, $B_k = F_{k-1}$. From this fact and (4), we have

$$A_{m} = 2F_{m-1} + F_{m-2} = F_{m} + F_{m-1} = F_{m} + F_{0}F_{m-1},$$

$$B_{m} = 2F_{m-2} + F_{m-3} = F_{m-1} + F_{m-2} = F_{m-1} + F_{0}F_{m-2},$$

$$A_{m+1} = (F_{m} + F_{m-1}) + F_{m-1} = F_{m+1} + F_{1}F_{m-1},$$

$$B_{m+1} = (F_{m-1} + F_{m-2}) + F_{m-2} = F_{m} + F_{1}F_{m-2}.$$

Thus, by induction, we obtain

$$A_{n-1} = F_{n-1} + F_{m-1}F_{n-m-1}$$
,
 $B_{n-1} = F_{n-2} + F_{m-2}F_{n-m-1}$.

Finally, by (4) and these formulas,

$$A_n = 2F_{n-1} + F_{n-2} + (2F_{n-m+1} + F_{n-m-2})F_{m-1} = F_{n+1} + F_{n-m+1}F_{m-1}$$

and, similarly, $B_n = F_n + F_{n-m+1}F_{m-2}$. Therefore, $a = A_n$ and $b = B_n$ and the first part of the lemma is proved.

Next, by Lemma 1, it follows that

$$F_{n+1} \le A_n = F_{n+1} + F_{n-m+1}F_{m-1} = F_{n+1} + F_n - F_{n-m}F_{m-2} \le F_{n+2}$$

and, similarly, $F_n < B_n < F_{n+1}$.

This lemma gives us n - 2 pairs (m = 2, 3, \cdots , n - 1) of integers (a,b) such that

$$F_{n+1} \leq a \leq F_{n+2}, \quad F_n \leq b \leq F_{n+1}$$

and $\ell(a,b) = n$. Since $\ell(F_{n+1}, F_n)$ and

$$\ell(F_{n+2}, F_n) = \ell(F_{n+1} + F_n, F_n) = \ell(F_{n+1}, F_n) = n,$$

there are so far n pairs in the range

$$(\mathbf{F}_{n+1}, \mathbf{F}_{n})\alpha(\mathbf{a}, \mathbf{b})\alpha(\mathbf{F}_{n+2}, \mathbf{F}_{n+1})$$

for which $\ell(a, b) = n$. The fact that there exists only one additional such pair is proved by the next two lemmas.

1973]

<u>Lemma 3.</u> Let $q_k = 1$ (k = 1, 2, ..., n - 1), $q_n = 3$ in the Euclidean algorithm (1) for the relatively prime integers a and b. Then

$$a = F_{n+1} + F_{n-1}$$
, $b = F_n + F_{n-2}$,

 $(\mathbf{F}_{n+1}, \mathbf{F}_n)\alpha(\mathbf{a}, \mathbf{b})\alpha(\mathbf{F}_{n+2}, \mathbf{F}_{n+1})$.

If $q_k \ge 1$ (k = 1, 2, ..., n - 1), $q_n \ge 3$, then the corresponding integers a and b obey the inequalities $a \ge F_{n+2}$ and $b \ge F_{n+1}$.

<u>Proof.</u> From the proof of Theorem 1, we have $A_{n-1} = F_{n-1}$ and $B_{n-1} = F_{n-2}$ when $q_k = 1$ ($1 \le k \le n$). If $q_n = 3$, then by (4),

$$A_n = 3F_{n-1} + F_{n-2} = F_n + 2F_{n-1} = F_{n+1} + F_{n-1}$$

and, similarly, $B_n = F_n + F_{n-2}$. Since $F_{n-2} \leq F_{n-1} \leq F_n$, we have

and

$$b = B_n < F_n + F_{n-1} = F_{n+1}$$

 $a = A_n \leq F_{n+1} + F_n = F_{n+2}$

Next, if $q_k \ge 1$ ($1 \le k \le n$) and $q_n \ge 4$, we have $A_{n-1} \ge F_{n-1}$ and $B_{n-1} \ge F_{n-2}$. By (4)

$$a = A_n \ge 4A_{n-1} + A_{n-2} \ge 4F_{n-1} + F_{n-2}$$
$$= F_{n+1} + 2F_{n-1} \ge F_{n+1} + F_n = F_{n+2}.$$

Similarly, $b = B_n > F_{n+1}$.

 $\begin{array}{c} \mbox{Lemma 4.} & \mbox{Let the Euclidean algorithm for the integers a and b be (1), where $q_k \ge 2$} \\ \mbox{for at least three indices k or where $q_p \ge 2$, $q_m \ge 3$ for $1 \le p,m \le n$,} \\ \mbox{p \neq m. Then $a > F_{n+2}$.} \end{array}$

<u>Proof.</u> Let $q_k \ge 2$ for k = m, $p (1 \le m . Then, paralleling the proof of Lemma 2, we obtain$

(5)
$$a \ge A_n \ge F_{n+1} + F_{n-m+1} + F_{n-p+1} + F_{p-1}$$
.

Now the last expression is greater than F_{n+2} provided

(6)
$$F_{n-m+1} F_{m-1} + F_{n-p+1} F_{p-1} > F_n$$

Since

$$\mathbf{F}_{n-s+1} \mathbf{F}_{s-1} > \frac{1}{2} \mathbf{F}_{n}$$

and

for $1 \le s \le n$ by Lemma 1, the inequality (6) is valid. We conclude from (5) that

$$a \ge A_n \ge F_{n+1} + F_n = F_{n+2}$$

If for some index m, $1 \le m \le n$, we have $q_m \ge 3$, then $A_k \ge F_k$ for k = 1, 2, \cdots , m - 1 and by (4)

$$A_{m} \ge 3F_{m-1} + F_{m-2} = F_{m+1} + F_{m-1} \ge F_{m+1},$$
$$A_{m+1} \ge (F_{m+1} + F_{m-1}) + F_{m-1} \ge F_{m+1} + F_{m} = F_{m+2}.$$

By induction, $A_k > F_{k+1}$ for $m \le k \le n$. Now

$$A_n \ge 2A_{n-1} + A_{n-2} \ge 2F_n + F_{n-1} = F_{n+2}$$

so a > F_{n+2} . The final case to consider is when $q_m = 2$ for some index m, $1 \le m \le n$ and $q_n \ge m$ 3. As in the proof of Lemma 2, it is easily shown that

$$A_k \ge F_k + F_{m-1} F_{k-m}$$
 (k = m, m + 1, ..., n - 1).

$$A_{n} \geq 3A_{n-1} + A_{n-2} \geq 3F_{n-1} + F_{n-2} + (3F_{n-m-1} + F_{n-m-2})F_{m-1}$$
$$\geq F_{n+1} + F_{n-1} + (F_{n-m+1} + F_{n-m-1})F_{m-1} \geq F_{n+2},$$

provided

$$F_{n-m+1}F_{m-1} + F_{n-m-1}F_{m-1} > F_{n-2}$$

This is the case since, by Lemma 1,

$$F_{n-s+1}F_{s-1} > \frac{1}{2}F_n$$

for $1 \leq s \leq n$ and, hence,

$$F_{n-m+1}F_{m-1} + F_{n-m-1}F_{m-1} > \frac{1}{2}(F_n + F_{n-2}) > F_{n-2}$$

Therefore, a > F_{n+2} in all cases considered in this Lemma.

Collecting the results in the last three lemmas, we have proved the following:

Theorem 2. Let \mathbb{A} be the set of ordered pairs (a,b) such that $(a,b)\alpha(F_{n+2},F_{n+1})$. There are exactly n + 1 pairs in \mathbb{A} such that $\ell(a,b) = n$. These pairs are obtained from the formulas

$$a = F_{n+1} + F_{n-m+1} F_{m-1}, \qquad b = F_n + F_{n-m+1} F_{m-2}$$

 $(m = 0, 1, 2, \dots, n)$, where $F_{-2} = F_{-1} = 0$ and F_j for each $j \ge 0$ is the j^{th} Fibon-acci number (2).

The results in Theorem 2 were suggested to the authors by considering a number of special cases on an IBM 360/65 computer.

REFERENCES

- 1. R. L. Duncan, "Note on the Euclidean Algorithm," <u>The Fibonacci Quarterly</u>, Vol. 4 (1966), pp. 367-368.
- 2. O. Perron, Die Lehre von den Kettenbruchen, Vol. 1, Teubner, Stuttgart, 1954.
- 3. J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, 1939.

LETTERS TO THE EDITOR

Dear Editor:

In the paper (*) by W. A. Al-Salam and A. Verma, "Fibonacci Numbers and Eulerian Polynomials," <u>Fibonacci Quarterly</u>, February 1971, pp. 18-22, an error occurs in (9), which is readily corrected. I will generalize their (4) by defining a general polynomial operator M by

$$Mf(x) = Af(x + c_1) + Bf(x + c_2), \qquad c_1 \neq c_2,$$

where f(x) is a polynomial and A, B, c_1 , and c_2 are given numbers. With D = d/dx, we note that $M = Ae^{c_1D} + Be^{c_2D}$ so that

$$Mf(x) = A \sum_{n=0}^{\infty} \frac{c_1^n}{n!} D^n f(x) + B \sum_{n=0}^{\infty} \frac{c_2^n}{n!} D^n f(x) ,$$

or

(II)

(I)

$$Af(x + c_1) + Bf(x + c_2) = \sum_{n=0}^{\infty} \frac{W_n}{n!} D^n f(x)$$

where $W_n = Ac_1^n + Bc_2^n$ is the solution of $W_{n+2} = PW_{n+1} - QW_n$ and $c_1 \neq c_2$ are the roots of $x^2 = Px - Q$. In (*), Eq. (4) is a special case of (I) with $A = \mu$ and $B = 1 - \mu$. There are two cases of (II) to consider:

<u>Case 1</u>. $A + B \neq 0$. If A = B, we obtain from (II)

(III)
$$f(x + c_1) + f(x + c_2) = \sum_{n=0}^{\infty} \frac{V_n}{n!} D^n f(x)$$

where $V_0 = 2$, $V_1 = P$, and $V_{n+2} = PV_{n+1} - QV_n$. If c_1 and c_2 are roots of $x^2 = x + 1$, [Continued on page 71.]