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Throughout this article let a and b be integers, a> b > 0. The Euclidean algo-

rithm generates finite sequences of nonnegative integers,

{q and {r. "

J =1 J j=1
such that
a = qgib + 1y, 0< r;< b,
b = gry + T3, 0< r; < 1y,
Ty = Qggry + Ty, 0 < r3< 1y,
1)
= < <
Th-3 -1"n-2 * Tho1° 0 Ta-1 Th-2
T = ann—l + T r, = 0 .

The integers r is the greatest common divisor of a and b and qn2 2.

n-1
Define {(a,b) to be the number of divisions n in the algorithm (1). Some basic prop-

erties of f(a,b) are

@) fa,a) = 1;

(ii) f(ac,bc) = fLa,b), ¢ > 0;
(iii) fa + b,b) = La,b);

(iv) f(a + b,a) = 1+ g(a,b) .

Each of these properties is proved directly from the definition (1). Property (ii) permits us
to assume a and b are relatively prime.

This paper is concerned with maximizing f(a,b) when the integers a and b are drawn
from certain subclasses of positive integers. There are some classical results in this di-
rection such as the theorem of Lamé [3, p. 43] which states that f£(a,b) is never greater
than five times the number of digits in b. We begin with a known result, the proof of which
is instrumental for the justification of the main theorem of the paper.

Theorem 1. Let {FJ} be the Fibonacci sequence generated by
(@) Fivg = Fj+1,,+ Fp F =0 Fy=1 (=-1,01,2 ).
Eciterial note: This iz not our standerd riboreccei sequernce.
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If a < Fm+1 or b < Fm for some integer m > 0, then #@a,b) < «F = m.

m+1’ Fm)
Proof. From (1) the rational number a/b has a continued fraction expansion

11 1
—_— ss s = < = i < =
d + a3+ T, 0T G=ism q =z

a
(3) - @t
. th th . . . .
The k™ numerator Ak and the k™ denominator Bk of this continued fraction are deter-

mined from the equations

(4) A, = q A A

k - %fgor t B

B (k=1,2,“-,n),

k-2’ k= 9Br-1 T Beog
where

Ag =1, By = 0, Ay = qy, B; =1 [2,p. 3].

Since ) > 0 for each index k =n, it follows from (4) that

Moreover, by (1) and (4) we have a = An’ b = Bn .
Suppose a and b are integers for which n = f(a,b) = m. Since Gy =Z1 (1=k=n)),
we have Ay = Fy, Ay = Fy, Ay =Fy + Fy = Fy, and, in general,

= = = < <
Ak = Ak—l + Ak_2 = Fk—l + Fk-z Fk (1 k n) .
Finally, since q4, = 2, we have by (2)
An = 2An—l * An = ZFn-l * Fn-z = Fn—l * Fn = Fn+1

Similarly, B, = F (1=k< n) and B = F_. Furthermore, A = F if and only if
k k-1 n n n n+l
= =k < = = i i = < k< =
1 1=k <n), a4, 2 and Bn Fn if and only if A 1 1< k <n), q4, 2.
Since a= A = F

n n+1 = Fm+1
first part of the implication in the statement of the theorem proved. The fact that L(F

£
and b = B][1 = Fn = Fm, we have the contrapositive of the

m+l,
Fm) = m is a consequence of the statements concerning equality of Am and Bm with Fm+l
and F_, respectively [1].

The ordered pairs of integers (a,b) can be partially ordered by defining (a,b)a(a',b")

if a=< a' and b = b'. Relative to this partial order, the theorem states, in particular, that

(Fm+1,Fm) is the "first' pair for which f{(a,b) = m, i.e., if (', b')a(Fm+1, Fm), then
< = =
f{a',b") 1(Fm+l,Fm) unless a' Fm+1 and b' Fm"
The proofs of our next results are dependent on the following known lemma.
Lemma 1. F =FF +F F =1,2,°¢°) .
—— ptq P aq p-1"g-1 ®>a )
Proof. Set S =F F +F _F .. Then by (2)
—_ p.q p g "p-lg-1
S = (F + F JF + F F .F F _F =8 .

F = +
P:q p-1 p-2""¢q p-1"g-1 p-1" g+l p-27¢q p-1,q+1
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Repeated application of this identity yields

s =8 = F,F 0Fprqz = Fpig

+
Psq 1,g+p-1 1" p+g-1 F

Corollary (Lamé). If m is the number of digits in the integer b, then £(a,b) = 5m.
e > 10" by induction. For n = 1, Fg = 13 > 10, If the
inequality is valid for an integer n, then by Lemma 1

Proof, We first show F

= > 810" + 2 10% = 2L R > o0t
F5n+6 F5n+1F5 + F5nF4 8.10" + 5 10 5 10 10
since
1
> =
F5n 2 F5n+1 :

Thus, the inequality is valid for all integers.
Now if b has m digits, then b < 10™ and, hence, b < Fg o +1- By Theorem 1 it
follows that £(a,b) < 5m + 1 and Lamé theorem is proved.
It is interesting to observe that equality is possible in Lamé theorem if b < 103, If b
has four digits, then b < Fy; = 10946 and, by Theorem 1, £(a,b) < L(Fy,Fy) = 20,
More generally, equality cannot hold in the Corollary for m > 3. Indeed, by Lemma 1kanld
+

the argument used in the proof of the corollary, we have Fp > 10k implies Fp 45 > 10

Since Fy > 104, it follows that F_ > 16" for m =4, If b < 10™ (m = 4), then

< =
L(a,b) L(F F5m) 5m .

5m+1’

The next problem considered in this article pertains to the number of distinct pairs
(a,b) such that

(F Ja(a, b)a(F F )

m+1’ Fm m+2° " m+1

and {(a,b) = m. We prove there are m + 1 such pairs and obtain formulas for the integers
a and b that comprise the pairs. It is convenient to establish these resultsfrom a sequence
of lemmas.

Lemma 2. Let the Euclidean algorithm for a and b, a and b are relatively prime,
be (1) where for some integer m (1 < m < n) -q, = 2 and 4 = 1 K#m, 1=k <n),
q, = 2. Then

a= Fn+1 * Fn-m+1Fm—1

and

b = Fn + ]5‘n_m+1Fm_2 .

Moreover, (a,b)a(F ., F ).

n+2 n+1
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Proof. From the proof of Theorem 1, we have that the kth numerator and denomina-

tor of the continued fraction expansion for a/b when f(a,b) = n satisfy, for k < m, the
conditions Ak = Fk’ Bk = Fk-l' From this fact and (4), we have
Am = ZFm—l * Fm—z = Fm * Fm—l = Fm * FOFm

Bm = ZFm—2 * Fm—3 = Fm—l * Fm—Z = Fm—l + FOFm—Z ’

1 (Fm * Fm—l) * Fm—l = Fm+1 * FlFm

-1°

Am+ -1’
Brn = Fppq v P o) *Fp o = Fpy v FiF o

Thus, by induction, we obtain

n-1 Fn—l * Fm—an—m—l ’

n-1 Fn-z * Fm—ZFn-m—l :

I

1]

Finally, by (4) and these formulas,

An = 2Fn-l * Fn-z + (ZFn—m+1 * Fn—-m-Z)Fm—l = Fn+1 * Fn—m+1Fm-1
and, similarly, Bn = Fn + Fn-m+1Fm-2' Therefore, a = An and b = Bn and the first
part of the lemma is proved.
Next, by Lemma 1, it follows that
< = = - <
Fn+1 An Fn+1 * Fn—m+1Fm—1 Fn+1 * Fn Fn—-mFm—Z Fn+2
imi < <
and, similarly, Fn Bn Fn+1'
This lemma gives us n - 2 pairs (m = 2, 3, ***, n - 1) of integers (a,b) such that
< < < <
Fn+1 a Fn+2’ Fn b Fn+1 ’

and f£(a,b) = n. Since I(Fnﬂ, Fn) and

ME oo F) = LF o +F, F ) =LF 4, F)=n,

there are so far n pairs in the range

(F F )a(a, b)oz(Fn_(_2 , F o)

n+1’ n+l

for which £(a,b) = n. The fact that there exists only one additional such pair is proved by

the next two lemmas.
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Lemma 3. Let q = 1 k=1,2,+,n-1), q, = 3 in the Euclidean algorithm
(1) for the relatively prime integers a and b. Then

a = F + F b=F +F
n n-

n+1 n-1’ 2°
and
(Fpyp> Fpla@ba® o0 F o 4) .
If e =1 k=1,2,+*+,n-1), q, > 3, then the corresponding integers a and b obey
: - > N
the inequalities a Fn+2 and b Fn 410
Proof. From the proof of Theorem 1, we have A =F and B =F when
_— n-1 n-1 n-1 n-2
q = 1 A=k<n) If q, = 3, then by (4),
An = 3Fn—1 + Fn—Z = Fn + ZFn_l = Fn+1 + Fn—l
- _ ; < <
and, similarly, Bn Fn+Fn—2' Since Fn_2 Fn—l Fn’ we have
= < =
a An Fn+1 + Fn Fn+2
and
= < =
b Bn Fn + Fn—l Fn+1 .
. = <k < = = >
Next, if % =1 (1 =k <n) and a, = 4, we have An—l = Fn—l and Bn—l = Fn_z.
By (4)
a = An = 4An—l * An—z = 41?n—l * Fn—2
= > =
Fn+1 * 2Fn—l Fn+1 * Fn Fn+2

Similarly, b = Bn > Fn+1'
Lemma 4. Let the Euclidean algorithm for the integers a and b be (1), where e = 2

Lav a+ lan e indi s K o7 wo P
for at least three indices K or where G‘p > 2, Q, >3 for I <p,m <n,

n+2°

Proof. Let g =2 for k =m, p (1=m <p <n). Then, paralleling the proof of
Lemma 2, we obtain

(5) a= A =F +
n n+l Fn—m+1 Fm—l N Fn—p+1 Fp-l :

Now the last expression is greater than Fn 42 provided

(6) F F

n-m+1 F

>
m-1 + Fn—p+1 Fp—l n'

Since

5]
\Y%
Do =
5]

n-s+1 Fs-1
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for 1 =s =n by Lemma 1, the inequality (6) is valid. We conclude from (5) that

If»for some index m, 1= m <n, we have 9y = 3, then A, = F, for k=1, 2,

k k
«e., m -1 and by (4)

= = >
Am 3Fm—l * Fm—z Fm+1 * Fm-l Fm+1 ’
= > =
Am+1 = (Fm+1 * Fm—l) + Fm—l Fm+1 * Fm Fm+2 :
By induction, Ak > Fyq for m =k < n. Now
> =
An = 2An—1 + An—2 ZFn + Fn—-l Fn+2
>

so a Fn+2'

The final case to consider is when 9, = 2 for some index m, 1= m < n and a4, =

3. As in the proof of Lemma 2, it is easily shown that

Aksz+Fm—1Fk—m k =m,m+1, ***,n - 1).
Thus,
An = 3An—l * An—Z = 31:‘n—l + Fn—z + (3Fn—m—1 + Fn--m—Z)Fm—l
>
= F TPt T Y Fam 1Fme1 7 Fraee
provided

F F

n-m+1 " m-1 +F F

>
n-m-1"m-1 Fn—z :

This is the case since, by Lemma 1,

DN =
r

>
Fn—s+1 Fs—l

for 1 = s = n and, hence,

1
> = >
F F F 2(Fn+F ) F

n-m+1 Fm—l * n-m-1"m-1 n-2 n-2°

Therefore, a > Fn+2 in all cases considered in this Lemma,
Collecting the results in the last three lemmas, we have proved the following:
Theorem 2. Let A be the set of ordered pairs (a,b) such that (a,b)a(Fn+2,Fn+1).

There are exactly n +1 pairsin A such that £(a,b) = n. These pairs are obtained from

the formulas
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m=0,1, 2, *+-, n), where F_2 =F . =0 and Fj for each j = 0 is the jth Fibon-

-1
acci number (2).
The results in Theorem 2 were suggested to the authors by considering a number of

special cases on an IBM 360/65 computer.
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————
LETTERS TO THE EDITOR
Dear Editor:

In the paper () by W. A. Al-Salam and A. Verma, "Fibonacci Numbers and Eulerian
Polynomials, " Fibonacci Quarterly, February 1971, pp. 18-22, an error occurs in (9), which

is readily corrected. I will generalize their (4) by defining a general polynomial operator
M by
0] Mf(x) = Af(x + c¢q) + Bf(x + cy), ¢y # ¢y,

where f(x) is a polynomial and A, B, ¢;, and c, are given numbers. With D = d/dx,
we note that M = Ae®tP + Be®P 5o that

©0 n ©0 Cn
Cq 2
Mf(x) = A Z — D f(x) + BZ - D(x) ,
=0 n=0

or
©o
AW
(I1) Af(x + ¢q) + Bf(x + cy) = Z —n—,n D(x) ,
=0
where Wn = Aci1 + Bcgrl is the solution of Wn+2 = PWn+1 - QWn and cy; # cy arethe roots

of x> = Px-Q. In (¥, Eq. (4) is a special case of (I) with A =u and B =1 -u. There
are two cases of (II) to consider:

Casel. A+B # 0. If A = B, we obtain from (II)

0

Vv
(IIm) B + o) + Hx + 0p) = D, =2 Do,
n=0
= - = 2 —
where V, = 2, V4 =P, and Vn+2 = PVn_l_1 - QVn. If ¢y and cy are roots of x x+1,

[Continued on page 71.]



