repeat in cycles of 60. The question naturally arises as to the cycling pattern of other $\{B,N\}$. The answer is in Table 3.

Table 3

.

CYC	CLE SIZE OF REPEA	TED	FINA	L DIO	HTS I	N {E	8,N}	(EXC	LUDIN	NG F	3, N,	1)
	N mod 10 B mod 5	0	1	2	3	4	5	6	7	8	9	
	0, 1, and 2	1	60	4	24	6	3	20	12	24	6	
	3	1	12	4	24	6	3	4	12	24	6	
	4	1	60	2	24	6	3	20	6	24	6	

REFERENCES

- 1. H. S. M. Coxeter, Introduction to Geometry, Wiley, New York, 1967, p. 168.
- V. E. Hoggatt, Jr., and D. A. Lind, "The Dying Rabbit Problem," <u>Fibonacci Quarterly</u>, Vol. 7, No. 4 (1969), pp. 482-487.
- 3. N. N. Vorob'ev, Fibonacci Numbers, Blaisdell Publishing Company, New York, 1961.

APPENDIX

VARIOUS $F_{B,N,n}$ TO n = 25

The tables appear on the following pages.

CONFERENCE PROGRAM FIBONACCI ASSOCIATION MEETING

Saturday, Octo	ber 21, 1972 San Jose State University, Macquarrie Hall
9:15 a.m.	Registration
9:30 - 10:20	SOME QUASI-EXOTIC THEOREMS Dmitri Thoro, Professor of Mathematics, San Jose State University
10:30 - 11:20	GENERALIZED LEO MOSER PROBLEMS Pat Gomez, Student, San Jose State University
11:30 - 12:00	FUN WITH FIBONACCI AT THE CHESS MATCH AND THE BALL PARK Marjorie Bicknell, Mathematics Teacher, A. C. Wilcox High School
1:30 - 2:20	INTERVALS CONTAINING INFINITELY MANY SETS OF ALGEBRAIC INTEGERS — Raphael Robinson, Professor of Mathematics, University of California, Berkeley
2:30 - 3:20	SOME ADDITION THEOREMS IN NUMBER THEORY C. T. Long, Professor of Mathematics, Washington State University, Visiting University of British Columbia
3:30 - 4:10	SOME CONGRUENCES OF THE FIBONACCINUMBERS MODULO A PRIME, V. E. Hoggatt, Jr., San Jose State University

~~~**~** 

50