Then in terms of the Riemann Zeta function,

$$
-C_{n}=\frac{1}{n^{s}}+\frac{1}{n^{s+1}}+\frac{1}{n^{s+2}}+\cdots
$$

or

$$
C_{n}=\left\{\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{(n-1)^{s}}\right\}-\zeta(\mathrm{s})
$$

However, the zeta function can be analytically continued for $R_{e}(s)<1$ and for negative integers it is given by [2]

$$
\begin{gathered}
\zeta(-2 \mathrm{~m})=0, \quad \zeta(1-2 \mathrm{~m})=(-1)^{\mathrm{m}} \mathrm{~B}_{\mathrm{m}} /(2 \mathrm{~m}), \quad \mathrm{m}=1,2,3, \cdots, \\
\zeta(0)=-1 / 2 \quad\left(\mathrm{~B}_{\mathrm{m}} \text { are the Bernoulli numbers }\right) .
\end{gathered}
$$

Now letting $s=-1$ above, gives the valid particular solution

$$
C_{n}=(1+2+3+\cdots+n-1)-\zeta(-1)
$$

Since the constant $\zeta(-1)$ satisfies the homogeneous equation, it can be deleted.

REFERENCES

1. R. J. Weinshenk and V. E. Hoggatt, Jr., "On Solving $C_{n+2}=C_{n+1}+C_{n}+n^{m}$ by Expansions and Operators," Fibonacci Quarterly, Vol. 8, No. 1, 1970, pp. 39-48.
2. C. N. Watson, A Course in Modern Analysis, Cambridge University Press, Cambridge, 1946, pp. 267-268.
[Continued from page 162.]

ERRATA

Please make the following correction to "A New Greatest Common Divisor Property of the Binomial Coefficients," appearing on p. 579, Vol. 10, No. 6, Dec. 1972:

On page 584, last equation, for

$$
\binom{n+n}{k+a} \quad \text { read } \quad\binom{n+a}{k+a} .
$$

In "Some Combinatorial Identities of Bruckman," appearing on page 613 of the same issue, please make the following correction.

On the right-hand side of Eq. (12), p. 615, for

