A RELIABLITY PROBLEM

MURRAY S. KLAMKIN

Scientific Research Staff, Ford Motor Company, Dearborn, Michigan
 and
 R. S. FISHMAN
 Raytheon Company, Bedford, Massachusetts

Abstract

An $m \times n$ array of elements is considered in which each element has a probability p of being reliable. The array as a whole is considered reliable if there does not exist in the array any polydominoe of a given form in any orientation having all of its elements unreliable. A method is given for determining the probability of reliability for the array and solutions are worked out explicitly for several special cases.

1. INTRODUCTION

We are given an $m \times n$ array

in which each of the mn elements has a given probability p of being reliable (and a probability q of being unreliable where $p+q=1$). The $m \times n$ matrix as a whole will be considered reliable, if and only if, there does not exist in the array, any polydominoe of a given form in any orientation having all of its elements unreliable. The problem then is to calculate the probability of reliability of the array. The special ease where $\mathrm{m}=2$ and the given polydominoe is a 2×1 arose in the design of a low-altitude detection antenna. If any 2×1 polydominoe had both its elements unreliable, then the antenna could not fulfill its detection mission.

The specific cases to be considered here explicitly are the following:

\[

\]

	Array size
$\left(\mathrm{C}_{2}\right)$	$2 \times \mathrm{n}$
$\left(\mathrm{C}_{3}\right)$	$2 \times \mathrm{n}$

For all the cases, we will let P_{n} denote the probability of the $2 \times n$ or $3 \times n$ array being reliable. For the $2 \times n$ array, $A_{n}, B_{n}, C_{n}, D_{n}$ will denote the respective probabilities of reliability of the array if the end 2×1 polydominoe has the form

$$
\begin{array}{|l|}
\hline \mathrm{p} \\
\hline \mathrm{p} \\
\hline
\end{array}, \begin{array}{|c|}
\hline \mathrm{p} \\
\hline \mathrm{q} \\
\hline
\end{array}, \begin{array}{|l|}
\hline \mathrm{q} \\
\hline \\
\hline
\end{array}
$$

and then
(1)

$$
P_{n}=A_{n}+B_{n}+C_{n}+D_{n}
$$

For the case $\left(C_{1}\right), D_{n}=0$ and $B_{n}=C_{n}$. Here, for an A_{n+1} array, the end 2×2 polydominoe must have one of the three following forms:

p	p			
p	p	,\quad	p	p
:---	:---			
q	p	,	q	p
:---	:---			
p	p			

Thus,
(2)

$$
A_{n+1}=p^{2}\left(A_{n}+B_{n}+C_{n}\right)
$$

For a B_{n+1} array, the end 2×2 polydominoe must have one of the two forms

p	p			
p	q	\quad, \quad	q	p
:---	:---			
p	q			

and thus
(3)

$$
B_{n+1}=p q\left(A_{n}+C_{n}\right)
$$

and similarly
(4)

$$
C_{n+1}=p q\left(A_{n}+B_{n}\right)
$$

On eliminating B_{n} and C_{n}, we obtain
(5)

$$
A_{n+1}=p^{2} P_{n}
$$

(6)

$$
P_{n+1}=p P_{n}+p q A_{n}
$$

and then

$$
\begin{equation*}
P_{n+1}=p P_{n}+p^{3} q P_{n-1} \tag{7}
\end{equation*}
$$

For initial conditions, we have
(8)

$$
A_{1}=p^{2}, \quad B_{1}=p q=C_{1}, \quad D_{1}=0
$$

Whence,
(9)

$$
P_{1}=1-q^{2}, \quad P_{2}=2 p^{2}-p^{4}
$$

The solution of (7) is then given by

$$
P_{n}=k_{1} r_{1}^{n}+k_{2} r_{2}^{n}
$$

where r_{1}, r_{2} are the roots of $x^{2}=p x+p^{3} q$ and constants k_{1}, k_{2} are determined so as to satisfy (9). This gives
(10) $\quad P_{n}=\frac{1-q^{2}}{a}\left\{\left(\frac{p+a}{2}\right)^{n}-\left(\frac{p-a}{2}\right)^{n}\right\}+\frac{p^{3} q}{a}\left\{\left(\frac{p+a}{2}\right)^{n-1}-\left(\frac{p-a}{2}\right)^{n-1}\right\}$
where $a=\sqrt{p^{2}+4 p^{3} q}$.
For $\left(\mathrm{C}_{2}\right)$, it then follows as before that

$$
\begin{gather*}
A_{n+1}=p^{2}\left(A_{n}+B_{n}+C_{n}+D_{n}\right) \tag{11}\\
B_{n+1}=C_{n+1}=p q\left(A_{n}+B_{n}+C_{n}\right) \tag{12}\\
D_{n+1}=q^{2} A_{n}
\end{gather*}
$$

subject to the initial conditions,
(14)

$$
\mathrm{A}_{1}=\mathrm{p}^{2}, \quad \mathrm{~B}_{1}=\mathrm{pq}=\mathrm{C}_{1}, \quad \mathrm{D}_{1}=\mathrm{q}^{2}
$$

Eliminating $\mathrm{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}, \mathrm{D}_{\mathrm{n}}$, we obtain

$$
\begin{equation*}
A_{n+2}=\left(p^{2}+2 p q\right) A_{n+1}+p^{2} q^{2} A_{n}-2 p^{3} q^{3} A_{n-1} \tag{15}
\end{equation*}
$$

Whence,

$$
\mathrm{A}_{\mathrm{n}}=\mathrm{k}_{1} \mathrm{r}_{1}^{\mathrm{n}}+\mathrm{k}_{2} \mathrm{r}_{2}^{\mathrm{n}}+\mathrm{k}_{3} \mathrm{r}_{3}^{\mathrm{n}}
$$

where r_{1}, r_{2}, r_{3} are the roots of

$$
x^{3}=\left(p^{2}+2 p q\right) x^{2}+p^{2} q^{2} x-2 p^{3} q^{3}
$$

and the constants k_{1}, k_{2}, k_{3} are determined from the initial conditions (note that here $A_{1}=$ $\left.A_{2}=p^{2}, \quad A_{3}=p^{4}\left[1+2 p q+5 q^{2}\right]\right)$. Then B_{n}, C_{n}, D_{n} and P_{n} are easily determined.

For (C_{3}), we have (11) and

$$
\begin{equation*}
B_{n+1}=C_{n+1}=p q\left(A_{n}+B_{n}+C_{n}+D_{n}\right) \tag{16}
\end{equation*}
$$

$$
D_{n+1}=q^{2}\left(A_{n}+B_{n}+C_{n}\right)
$$

(again all subject to conditions (14)). On eliminating D_{n}, we obtain

$$
\begin{gather*}
A_{n+1}=p^{2} A_{n}+B_{n}+C_{n}+q^{2}\left(A_{n-1}+B_{n-1}+C_{n-1}\right) \tag{18}\\
p B_{n+1}=p C_{n+1}=q A_{n+1}
\end{gather*}
$$

Whence,
(20)

$$
A_{n+1}=p(p+2 q)\left(A_{n}+q^{2} A_{n-1}\right)
$$

Then,

$$
\mathrm{A}_{\mathrm{n}}=\mathrm{k}_{1} \mathrm{r}_{1}^{\mathrm{n}}+\mathrm{k}_{2} \mathrm{r}_{2}^{\mathrm{n}}
$$

where r_{i} are the roots of

$$
x^{2}=p(p+2 q)(x+q 3)
$$

and the $\mathrm{k}_{\mathrm{i}}^{\prime}$ s are determined from the initial conditions.
Then B_{n}, C_{n}, D_{n} and P_{n} are found from (14), (17) and (1).
For the $3 \times n$ arrays, we let $A_{n}, B_{n}, C_{n}, D_{n}, E_{n}, F_{n}, G_{n}, H_{n}$ denote the respective probabilities of reliability of the array if the end 3×1 polydominoe has the form

and

For $\left(C_{4}\right)$,

$$
\begin{equation*}
P_{n}=A_{n}+B_{n}+C_{n}+D_{n}+E_{n}+F_{n}+G_{n}+H_{n} \tag{21}
\end{equation*}
$$

For (C_{5}),

$$
\mathrm{F}_{\mathrm{n}+1}=\mathrm{pq}^{2}\left(\mathrm{~A}_{\mathrm{n}}+\mathrm{C}_{\mathrm{n}}\right)
$$

$$
B_{n}=C_{n}=D_{n}, \quad E_{n}=G_{n}
$$

$$
\begin{equation*}
A_{1}=p^{3}, \quad B_{1}=C_{1}=D_{1}=p^{2} q, \quad E_{1}=F_{1}=G_{1}=q^{2}, \quad H_{1}=q^{3} \tag{27}
\end{equation*}
$$

(28)

$$
\begin{gather*}
A_{n+1}=p^{3} P_{n} \tag{30}\\
B_{n+1}=p^{2} q P_{n} \\
E_{n+1}=p q^{2}\left(A_{n}+B_{n}+C_{n}+D_{n}+F_{n}+G_{n}\right) \tag{29}\\
F_{n+1}=p q^{2} P_{n} \tag{31}\\
H_{n+1}=q^{3}\left(A_{n}+B_{n}+C_{n}+D_{n}+F_{n}\right) \tag{32}
\end{gather*}
$$

Although we can carry out the elimination process for $\left(\mathrm{C}_{4}\right)$ and (C_{5}) by means of the operator E and then determine P_{n} in terms of the roots of a higher order polynomial, it is not worthwhile. In these cases (and even some of the prior ones), one can just use a computer on the recurrence relations to determine the $P_{n}{ }^{\prime} s$.

3. HIGHER ORDER POLYDOIINOES

The previous methods, with some adaptation, will also apply when the failure polydominoe is of higher order than the previous ones. As in the last two cases, it will suffice to just get the appropriate recurrence equations. If the failure polydominoe is of the type

in a $3 \times n$ array, then we would need terms A_{n}, B_{n}, \cdots, corresponding to a reliable $3 \times n$ array whose end 2×3 polydominoe has the forms

p	p
p	p
p	p

p	p
p	p
p	q

p	p
p	q
p	p

,
etc.
This will, of course, lead to an increased number of recurrence relations. Other arrays which can be solved similarly are cylindrical and torodial ones as well as higher dimensional ones.

