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The purpose of this note is to show that the geometrical method used by the author [ l ] 
in proving that the sum of the f irst n positive integers is ^n(n + 1) also can be used in 
proving the following result . Given two parallel lines with p points on the f irst , and q 
points on the second. Suppose each of the p points is joined by a straight line to each of the 
q points. Assume that between the parallel l ines, no more than two lines intersect at any 
point Then the lines joining the points have |pq(p - l)(q - 1) intersections between the 
parallel l ines. 

A proof of this resul t is as follows: 

Label the p points al9 a2s - • • , ap so that if the index j is greater than the index i , 
the directed line segment from a. to a. is in the same direction for each choice of i and 
j , i , j = 1, 2, • • • , p and i < j . (Thus the labeling is9 for example, from left to right or 
bottom to top.) See Fig. 1. Label the q points b l f b2, • • • , b q in a s imilar manner and so 
that for i < j , the directed line segment from bj to bj is in the opposite direction as that 
from ax to a . Denote by (a., b . ) , i = 1, 2, • - • , p and j = 1, 2, • •• , q the line be-
tween a. and b.. 
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Fig. 1 (p = 3, q = 4) 

Generally we shall place the pq lines sequentially in a certain order , to be specified, 
and count the number of intersections which ar i se . The order of placement is lexicographic: 

(at.bi), ( a^b^ ,— , (a i > b q ) , (a 2 ,b 1 ) ,— ,(a2»bq),— , ( a ^ b i ) , —,,(ak3bq)9 — , ( a p , b i ) , " - , ( a p , b q ) . 

The first set of lines ( a^b j ) , '' * , ( a i , b q ) contributes no intersections. See Fig. 2. 

a4 a2 a3 
Fig. 2 (p = 3, q = 4) 
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Considering the second set of q lines (a2, bt), • • • , (a2, bk), • • • , (a2, b q ) , none of them 
intersect with each other and (a2. bk) intersects with (k - 1) previously placed l ines: 

(al9 b i ) , (al9 b 2 ) , • • • , (a1? bk_i) . 

Thus these q lines contribute 

d + 2 + .. . + q - 1 ) = a ia^ i ) 

intersections. See Fig. 3. 

Fig, 3 (p = 3, q = 4) 

The third set of q lines (a2, bt)9 • • - , (a3, b q ) do not intersect with one another. The line 
(a3, b^) does intersect with the lines (a l f bj) and the lines (a2, bj) for j = 1, 2, • • • , 
(k - 1). Since here k may be equal to any of the integers 1, 2, • • • , o r q, the third set of 
lines contributes 2(1 + 2 + • • • + q - 1) intersections. See Fig. 4. 

Fig. 4 (p = 3, q = 4) 

Similarly, the r set of q lines (a r , b ^ , • • • , (a r , b q ) , r = 1, 2, • • • , p do not in ter-
sect with each other. The line (a r , b k ) intersects with the lines (aj, bj) , i = 1, 2, • • • , 
r - 1 and j = 1, 2, • • • , (k - 1). Thus placement of the line (a r , b]_) contributes no inter-
sections, placement of (a r , b 2 ) contributes (r - 1)(1) intersections, placement of (a r , 03) 
contributes (r - 1)(2) intersections, placement of (a r , bk) contributes (r - l)(k - 1) in ter-
sections and finally, placement of (a r , b q ) contributes (r - l)(q - 1) intersections. In 
total, the r set of lines contributes (r - 1)(1 + 2 + • • • + q - 1) intersections. 

Since the r set contributes (r - 1)(1 + 2 + • • • + q - 1) intersections and the index 
r may be 1, 2, • • • , or p we have that the total number of intersections is 
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P 
^ (r - 1)(1 + 2 + - - + q - 1) = (1 + 2 + • • • + p - 1)(1 + 2 + • • • + q - 1) , 
r= l 

which i s , as shown in [ l ] by the same method of sequential line placement, also equal to 

p(p__l) q ^ l ) =Xm(p_lHq_1)t 

Proof by G. Polya. In a private communication, Professor Polya has given the follow-
ing shorter proof: Consider the trapezium of which the intersecting line segments are the 
diagonals. (See Fig. 5. The trapezium consists of (bl9 D2), (b3, a 2 ) , (a2, a 3 ) , (a3, bj) .) 

Fig. 5 (p = 3, q = 4) 

Each trapezium is determined if a pair of points on each line is chosen and each different 
trapezium determines a different one of the intersections. Since there are 

(0(0- p(p - 1) q(q - 1) 
2 ' 2 

such choices, the result follows. This lat ter method of proof and the result a re quite s imilar 
to the solution of the problem of finding the number of intersections of the diagonals of aeon-
vex polygon of n sides as discussed in [ 2 ] . 
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