n-FIBONACCI PRODUCTS

SELMO TAUBER
Portland State University, Portland, Oregon

1. NOTATION

Let ϕ^{n} be the n-dimensional vector space, i.e., for

$$
x=\left[x_{1}, x_{2}, \cdots, x_{n}\right] \in \phi^{n}, \quad x_{1}, x_{2}, \cdots, x_{n} \in \phi^{1}
$$

In addition, let I be the set of positive integers, J the set of non-negative integers, $I(n) \subset I$, be such that if $k \in I(n)$ then $k \leq n, J(n) \subset J$, be such that if $k \in J(n)$ then $\mathrm{k} \leq \mathrm{n}$. $\mathrm{W}(\mathrm{n}) \subset \phi^{\mathrm{n}}$ is such that if $\mathrm{K} \in \mathrm{W}(\mathrm{n})$, where $K=\left[\mathrm{k}_{1}, \mathrm{k}_{2}, \cdots, \mathrm{k}_{\mathrm{n}}\right]$, then $\mathrm{k}_{\mathrm{m}} \in J$, for $m \in 1(n)$. In particular, $U=[1,1, \cdots, 1] \in W(n)$.

With $K \in W(n)$ and $X \in \phi^{n}$, we write
(1)

$$
x^{K}=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}=\prod_{m=1}^{n} x_{m}^{k_{m}}
$$

and in particular

$$
\begin{equation*}
x^{U}=x_{1} x_{2} \cdots x_{n} \tag{2}
\end{equation*}
$$

Also

$$
|x|=\sum_{m=1}^{n} x_{m}
$$

and
(4)

$$
\sum_{K=0}^{P} f(K)
$$

is the sum of all elements of the form $f(K)$ where the component of K, i.e., $k_{m}, m \in I(n)$, take all integer values such that $0 \leq k_{m} \leq p_{m}$, where $P=\left[p_{1}, p_{2}, \cdots, p_{n}\right] \in W(n)$.

Let $E(m)$ be the partial translation operator for the variable x_{m}, i.e.,

$$
\begin{equation*}
\mathrm{E}(\mathrm{~m}) \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)=\delta_{\mathrm{m}}^{\mathrm{k}} \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}+1\right), \quad \mathrm{k}, \mathrm{~m} \in \mathrm{I}(\mathrm{n}) \tag{5}
\end{equation*}
$$

where $\delta_{\mathrm{k}}^{\mathrm{m}}$ is the Kronecker delta. In addition, let $\Delta(\mathrm{m})=\mathrm{E}(\mathrm{m})$ - Id, Id being the identity operator. Using the vector notation introduced earlier, we have

$$
E=[E(1), E(2), \cdots, E(n)]
$$

(7)

$$
\Delta=[\Delta(1), \Delta(2), \cdots, \Delta(\mathrm{n})]
$$

and

$$
\mathrm{E}^{\mathrm{U}}=\mathrm{E}(1) \mathrm{E}(2) \cdots \mathrm{E}(\mathrm{n}), \quad \Delta^{\mathrm{U}}=\Delta(1) \Delta(2) \cdots \Delta(\mathrm{n}) .
$$

2. FIBONACCI AND LUCAS PRODUCTS

Let $F(m)$ be the general term of the Fibonacci sequence, $L(m)$ the general term of the Lucas sequence as defined in [1] and $H(m)$ the general term of the generalized Fibonacci sequence. Using the notation introduced in Section 1, we have with

$$
\mathrm{K}=\left[\mathrm{k}_{1}, \mathrm{k}_{2}, \cdots, \mathrm{k}_{\mathrm{n}}\right] \in \mathrm{W}(\mathrm{n})
$$

8)

$$
\begin{equation*}
F(K)=\left[F\left(k_{1}\right), F\left(k_{2}\right), \cdots, F\left(k_{n}\right)\right] \tag{8}
\end{equation*}
$$

(9)

$$
\mathrm{L}(\mathrm{~K})=\left[\mathrm{L}\left(\mathrm{k}_{1}\right), \mathrm{L}\left(\mathrm{k}_{2}\right), \cdots, \mathrm{L}\left(\mathrm{k}_{\mathrm{n}}\right)\right]
$$

$$
\begin{equation*}
\mathrm{H}(\mathrm{~K})=\left[\mathrm{H}\left(\mathrm{k}_{1}\right), \mathrm{H}\left(\mathrm{k}_{2}\right), \cdots, \mathbb{H}\left(\mathrm{k}_{\mathrm{n}}\right)\right] \tag{10}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathrm{f}(\mathrm{~K})=[\mathrm{F}(\mathrm{~K})]^{\mathrm{U}}=\prod_{\mathrm{m}=1}^{\mathrm{n}} \mathrm{~F}\left(\mathrm{k}_{\mathrm{m}}\right) \tag{11}\\
& \lambda(\mathrm{K})=[\mathrm{L}(\mathrm{~K})]^{\mathrm{U}}=\prod_{\mathrm{m}=1}^{\mathrm{n}} \mathrm{~L}\left(\mathrm{k}_{\mathrm{m}}\right) \\
& \mathrm{h}(\mathrm{~K})=[\mathrm{H}(\mathrm{~K})]^{\mathrm{U}}=\prod_{\mathrm{m}=1}^{\mathrm{n}} \mathrm{H}\left(\mathrm{k}_{\mathrm{m}}\right) .
\end{align*}
$$

The numbers $f(K), \lambda(K)$, and $h(K)$ are called the n-Fibonacci, Lucas and generalized Fibonacci products.

3. RECURRENCE RELATIONS

According to [1] we have for the three sequences considered
(14)

$$
F\left(k_{m}+2\right)=F\left(k_{m}+1\right)+F\left(k_{m}\right)
$$

which we can write

$$
\begin{equation*}
E(\mathrm{~m}) \Delta(\mathrm{m}) F\left(\mathrm{k}_{\mathrm{m}}\right)=\mathrm{F}\left(\mathrm{k}_{\mathrm{m}}\right) \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
[\mathrm{E}(\mathrm{~m}) \Delta(\mathrm{m})-\mathrm{Id}] \mathrm{F}\left(\mathrm{k}_{\mathrm{m}}\right)=0 \tag{16}
\end{equation*}
$$

Starting from (15) we can write

$$
\prod_{m=1}^{n} F(m) \Delta(m) F\left(k_{m}\right)=\prod_{m=1}^{n} F\left(k_{m}\right)
$$

or

$$
\mathrm{E}^{\mathrm{U}} \Delta_{\mathrm{f}} \mathrm{U}_{\mathrm{K})}=\mathrm{f}(\mathrm{~K})
$$

or again
(17)

$$
\left(E^{U} \Delta^{U}-I d\right) f(K)=0
$$

Thus the Fibonacci products satisfy a recurrence relation similar to the one dimension, i.e., (16). The same applies to the Lucas and generalized Fibonacci products, i.e.,

$$
\begin{equation*}
\left(\mathrm{E}^{\mathrm{U}} \Delta^{\mathrm{U}}-\mathrm{Id}\right) \lambda(\mathrm{K})=0, \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\left(\mathrm{E}^{\mathrm{U}} \Delta^{\mathrm{U}}-\mathrm{Id}\right) \mathrm{h}(\mathrm{~K})=0 . \tag{19}
\end{equation*}
$$

4. OTHER RELATIONS

The relations given in [1, pp. 59-60] can be generalized for n-Fibonacci and Lucas products. We illustrate by two examples:
(i) Relation (I 14) reads: $L(\mathrm{~m})=F(m+2)-F(m-2)$, or

$$
L(m+2)=F(m+4)-F(m)
$$

or, on operator form
(20)

$$
E^{2}(m) L(m)=\left[E^{4}(m)-I d\right] F(m)
$$

But

$$
\mathrm{E}^{4}(\mathrm{~m})-\mathrm{Id}=[\mathrm{E}(\mathrm{~m})-\mathrm{Id}][\mathrm{E}(\mathrm{~m})+\mathrm{Id}]\left[\mathrm{E}^{2}(\mathrm{~m})+\mathrm{Id}\right],
$$

where $E(m)-I d=\Delta(m)$.

$$
\mathrm{E}(\mathrm{~m})+\mathrm{Id}=2 \mathrm{M}(\mathrm{~m})
$$

where $M(m)$ is the partial mean operator. We define correspondingly

$$
M=[M(1), M(2), \cdots, M(n)],
$$

and

$$
M^{\mathrm{U}}=\prod_{\mathrm{m}=1}^{\mathrm{n}} \mathrm{M}(\mathrm{~m}) .
$$

In addition let

$$
\mathrm{P}(\mathrm{~m})=\mathrm{E}^{2}(\mathrm{~m})+\mathrm{Id}, \quad \mathrm{P}=[\mathrm{P}(1), \mathrm{P}(2), \cdots, \mathrm{P}(\mathrm{n})],
$$

and

$$
\mathrm{P}^{\mathrm{U}}=\mathrm{P}(1) \mathrm{P}(2) \cdots \mathrm{P}(\mathrm{n})=\prod_{\mathrm{m}=1}^{\mathrm{n}} \mathrm{P}(\mathrm{~m}) .
$$

We take now the product of both sides of (20) which we rewrite
(21)

$$
\prod_{m=1}^{n} E^{2}(m) L\left(k_{m}\right)=\prod_{m=1}^{n} 2 \Delta(m) M(m) P(m) F\left(k_{m}\right)
$$

or
(22)

$$
\mathrm{E}^{2 \mathrm{U}} \lambda(\mathrm{~K})=2^{\mathrm{n}} \Delta^{\mathrm{U}_{\mathrm{M}}} \mathrm{U}_{\mathrm{P}} \mathrm{U}_{\mathrm{f}}(\mathrm{~K})
$$

which is the relation corresponding to (I 14) of [1] for n-Fibonacci and Lucas products.
(ii) Relation (I 41) can be written

$$
\sum_{k=0}^{2 q}\binom{2 q}{k} F(2 k+p)=5^{q} F(2 q+p)
$$

or, introducing the variable m and the usual operators

$$
\begin{equation*}
\sum_{k_{m}=0}^{2 q_{m}}\binom{2 q_{m}}{k_{m}} E^{2 k_{m}}(m) F\left(p_{m}\right)=5^{q_{k}} E^{2 q_{m}}(m) F\left(p_{m}\right) \tag{23}
\end{equation*}
$$

Taking the product over m from $\mathrm{m}=1$ to $\mathrm{m}=\mathrm{n}$ and using the notation

$$
\prod_{m=1}^{n}\binom{2 q_{m}}{k}=\binom{2 Q}{K},
$$

where

$$
K=\left[k_{1}, k_{2}, \cdots, k_{n}\right] \in W(n), \quad Q, P \in W(n)
$$

we obtain the formula corresponding to (I 41), i.e.,
(24)

$$
\left[\sum_{K=0}^{2 Q}\binom{2 Q}{K} E^{2 K}-5^{|Q|} E^{2 Q}\right] f(P)=0
$$

REFERENCE

1. V. E. Hoggatt, Jr. , Fibonacci and Lucas Numbers, New York, 1969.
