PERIODICITY OF SECOND-AND THIRD-ORDER RECURRING SEQUENCES

 C. C. YALAVIGI

 C. C. YALAVIGI
 Mercara, Coorg, India

Define a sequence of generalized Fibonacci numbers

(1)

$$
\left\{\mathrm{w}_{\mathrm{n}}\right\}_{0}^{\infty}=\left\{\mathrm{w}_{\mathrm{n}}(\mathrm{~b}, \mathrm{c} ; \mathrm{P}, \mathrm{Q})\right\}_{0}^{\infty}
$$

by

$$
\begin{equation*}
w_{n}=b w_{n-1}+c w_{n-2}, \tag{2}
\end{equation*}
$$

where n denotes an integer $\geq 2, \mathrm{w}_{0}=\mathrm{P}$ and $\mathrm{w}_{1}=\mathrm{Q}$. Considering a special form of this sequence

$$
\left\{\mathrm{w}_{\mathrm{n}}^{(1)}\right\}_{0}^{\infty}=\left\{\mathrm{w}_{\mathrm{n}}(1,1 ; 0,1)\right\}_{0}^{\infty}
$$

D. D. Wall [1] has shown that

$$
\left\{\mathrm{w}_{\mathrm{n}}^{(1)}(\bmod \mathrm{m})\right\}_{0}^{\infty}
$$

(where m denotes a positive integer) is simply periodic. Our objective is to point out a rigorous proof of the same and extend it to the sequence of Tribonacci numbers

$$
\begin{equation*}
\left\{\mathrm{T}_{\mathrm{n}}\right\}_{0}^{\infty}=\left\{\mathrm{T}_{\mathrm{n}}(\mathrm{~b}, \mathrm{c}, \mathrm{~d} ; \mathrm{P}, \mathrm{Q}, \mathrm{R})\right\}_{0}^{\infty} \tag{3}
\end{equation*}
$$

This sequence of numbers is defined by

$$
\begin{equation*}
T_{n}=b T_{n-1}+c T_{n-2}+d T_{n-3}, \tag{4}
\end{equation*}
$$

where n denotes an integer $\geq 3, \mathrm{~T}_{0}=\mathrm{P}, \mathrm{T}_{1}=\mathrm{Q}$ and $\mathrm{T}_{2}=\mathrm{R}$.
Theorem a.

$$
\left\{\mathrm{w}_{\mathrm{n}}^{(1)}(\bmod \mathrm{m})\right\}_{0}^{\infty}
$$

is simply periodic.

Proof. Let

$$
m=\Pi p_{j}^{a_{j}}
$$

where $j=1,2, \cdots$, i and p_{j} represents a prime. Since

$$
\left\{\mathrm{w}_{\mathrm{n}}^{(1)}\left(\bmod \mathrm{p}_{\mathrm{j}}^{\mathrm{j}}\right\}_{0}^{\infty}\right.
$$

is known to be periodic [1], we denote the length of the period

$$
\left\{w_{n}^{(1)}\left(\bmod p_{j}^{\mathrm{a}_{\mathrm{j}}}\right\}_{0}^{\infty}\right.
$$

by k_{j} and write
(5)

$$
\mathrm{w}_{\mathrm{k}_{\mathrm{j}}}^{(1)} \equiv 0\left(\bmod \mathrm{p}_{\mathrm{j}}^{\mathrm{a}_{\mathrm{j}}}\right), \quad \mathrm{w}_{\mathrm{k}_{\mathrm{j}}+1}^{(1)} \equiv 1\left(\bmod \mathrm{p}_{\mathrm{j}}^{\mathrm{a}^{\mathrm{j}}}\right) .
$$

Then it is easy to show that

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{k}_{1} k_{2} \cdots \mathrm{k}_{\mathrm{i}}}^{(1)} \equiv 0\left(\bmod \mathrm{p}_{1}^{a_{1}}\right), \quad \mathrm{w}_{\mathrm{k}_{1} \mathrm{k}_{2} \cdots \mathrm{k}_{\mathrm{i}}}^{(1)} \equiv 0\left(\bmod \mathrm{p}_{2}^{a_{2}}\right), \cdots, \\
& \mathrm{w}_{\mathrm{k}_{1} k_{2} \cdots k_{i}}^{(1)} \equiv 0\left(\bmod \mathrm{p}_{\mathrm{i}}\right)
\end{aligned}
$$

(6) and

$$
\begin{gathered}
\mathrm{w}_{\mathrm{k}_{1} k_{2} \cdots k_{i}+1}^{(1)} \equiv 1\left(\bmod \mathrm{p}_{1}^{a_{1}}\right), \quad \mathrm{w}_{\mathrm{k}_{1} k_{2} \cdots k_{i}+1}^{(1)} \equiv 1\left(\bmod \mathrm{p}_{2}^{a_{2}}\right), \cdots, \\
\mathrm{w}_{\mathrm{k}_{1} k_{2} \cdots k_{i}+1}^{(1)} \equiv 1\left(\bmod \mathrm{p}_{\frac{1}{2}}^{\mathrm{i}}\right)
\end{gathered}
$$

Therefore, it follows that

$$
\mathrm{w}_{\mathrm{k}_{1} \mathrm{k}_{2} \cdots \mathrm{k}_{\mathrm{i}}}^{(1)} \equiv 0(\bmod \mathrm{~m})
$$

(7)
and

$$
\mathrm{w}_{\mathrm{k}_{1} \mathrm{k}_{2} \cdots \mathrm{k}_{\mathrm{i}}+1}^{(1)} \equiv 1(\bmod \mathrm{~m})
$$

and

$$
\left\{\mathrm{w}_{\mathrm{n}}^{(1)}(\bmod \mathrm{m})\right\}_{0}^{\infty}
$$

becomes simply periodic.

Theorem b. If $(b, c, P, Q, m)=1$, then $\left\{w_{n}(\bmod m)\right\}_{0}^{\infty}$ is simply periodic. Proof. Let

$$
\left\{\mathrm{w}_{\mathrm{n}}^{(2)}\right\}_{0}^{\infty}=\left\{\mathrm{w}_{\mathrm{n}}(\mathrm{~b}, \mathrm{c} ; 0,1)\right\}_{0}^{\infty}
$$

For p denoting a prime, if $(\mathrm{b}, \mathrm{c}, \mathrm{p})=1$, then ithas been shown in [3], that $\left\{\mathrm{w}_{\mathrm{n}}^{(2)}(\bmod \mathrm{p})\right\}_{0}^{\infty}$ is simply periodic. Also, since

$$
\mathrm{w}_{\mathrm{n}}=\mathrm{pw}_{\mathrm{n}}^{(2)}+\mathrm{cQw}_{\mathrm{n}-1}^{(2)},
$$

it follows that if $(b, c, P, Q, p)=1$, then $\left\{w_{n_{n}}(\bmod p)\right\}_{0}^{\infty}$ is simply periodic, and the technique of Theorem a renders that $\left\{\mathrm{w}_{\mathrm{n}}(\bmod \mathrm{m})\right\}_{0}^{\infty}$ is simply periodic.

Theorem c. Let

Then

$$
\left\{\mathrm{T}_{\mathrm{n}}^{(9)}\right\}_{0}^{\infty}=\left\{\mathrm{T}_{\mathrm{n}}(1,1,1 ; 0,0,1)\right\}_{0}^{\infty}
$$

$$
\left\{\mathrm{T}_{\mathrm{n}}^{(9)}(\bmod \mathrm{m})\right\}_{0}^{\infty}
$$

is simply periodic.
Proof. We have shown in [2], that $\left\{\mathrm{T}_{\mathrm{n}}^{(9)}(\bmod \mathrm{p})\right\}_{0}^{\infty}$ is simply periodic and the proof that $\left.\overline{\left\{\mathrm{T}_{\mathrm{n}}^{(9)}\right.}(\bmod \mathrm{m})\right\}_{0}^{\infty}$ is simply periodic follows from the technique of Theorem a.

Theorem d. If $(b, c, d, P, Q, R, m)=1$, then $\left\{T_{n}(\bmod m)\right\}_{0}^{\infty}$ is simply periodic.
The proof of this theorem is similar to that of Theorem c and is left to the reader.

ACKNOWLEDGEMENT

I am grateful to Dr. Joseph Arkin for drawing my attention to the problem of this note in connection with an earlier paper.

REFERENCES

1. D. D. Wall, "Fibonacci Series Modulo m," Amer. Math. Monthly, 67 (1960), pp. 525532.
2. C. C. Yalavigi, "Properties of Tribonacci Numbers," submitted to the Fibonacci Quarterly.
3. C. C. Yalavigi, "A Further Generalization of Fibonacci Sequence," to appear, Fibonacci Quarterly.
4. C. C. Yalavigi, "On the Periodic Lengths of Fibonacci Sequence, modulo p, " to appear, Fibonacci Quarterly.
5. C. C. Yalavigi and H. V. Krishna, "On the Periodic Lengths of Generalized Fibonacci Sequence Modulo p," to appear, Fibonacci Quarterly.
