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Define a sequence of generalized Fibonacci numbers 

(1) { w n } " = {wn(b,c; P.Q)}" 

by 

(2) wn = b w n l + cwn_2 , 

where n denotes an integer ^2, w0 = P and w1 = Q. Considering a special form of this 
sequence 

D. D. Wall [l] has shown that 

{wn % " ^ w n ( l s l ; ° 9 l ) ^ > 

,(D {wn
l (mod m)}°̂  

(where m denotes a positive integer) is simply periodic. Our objective is to point out a 
rigorous proof of the same and extend it to the sequence of Tribonacci numbers 

(3) {T }°° = {T(b f c ,d ; P,Q,R)}T . 
n o n 

This sequence of numbers is defined by 

(4) T = bT n + cT 0 + dT Q , v ' n n-1 n-2 n-3 

where n denotes an integer > 3 , T0 = P9 Tt - Q and T2 = R. 
Theorem a. 

(w^ (mod m)}0 

is simply periodic. 

Proof. Let 
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a. 
m = i W 

J 

where j = 1, 2, " • , i and p. represents a pr ime. Since 

a. °° 
{ w ^ (mod p . 3 } n J O 

i s known to be periodic [ l ] , we denote the length of the period 

a °° 
( w ^ (mod p M 

1 1 J 0 

by k. and write J 3 
2L a 

(5) w ^ = 0 (mod p j ) , w ^ = 1 (mod p j ) . 
3 3 3 

Then it i s easy to show that 

< L 2 . . . k i - ° <mod #>• ^ . . . k i 5 ° < m o d *"2> • - . 

(6) and 

' S k j . - k i + l H X ^ d p f 1 ) ' ^ - . . k i + 1 s X ( m o d p ^ 2 ) ' • " ' 
/- v a. 

w, , i J.I = 1 (mod pi ) . k1k2- • • ki+1 **• 

Therefore, it follows that 

^ • • • k i 5 ° ( m o d m ) 

(7) and 

W kfk 2 - . -k i + l S * < m 0 d m ) 

and 

{w (mod m)} 

becomes simply periodic. 
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Theorem b. If (b, c, P , Q, m) = 1, then {wn (mod m)}* is simply periodic. 
Proof. Let 

N f f = (w (b,c, o,i)}:. 

^ 9 j j ; — A, uLicu. lLimo uccn snuwii ILL IOJ , m a t ^ v" 

is simply periodic. Also, since 
For p denoting a prime s if (b,c,p) = 1, then it has been shown in [3] , that {w( ' (mod p)}^ 

(2) (2) 
w = pw + cQw ' , 

n * n ^ n-1 
it follows that if (b , c ,P ,Q ,p ) = 1, then {w (modp)}0 is simply periodic, and the tech-
nique of Theorem a renders that (w (mod m)}0 is simply periodic. 

Theorem c. Let 
CO 

{V9 )} = { T n ( l f l f l ; 0,0,1)}* . 0 
Then 

{Ti 9 ) (modm)}c 
is simply periodic. 

Proof. We have shown in [2] , that { T (mod p)}0 is simply periodic and the proof 
r ?9T~~ i°° n 

that ( T (mod m))0 i s simply periodic follows from the technique of Theorem a. 
Theorem d. If (b, c, d, P , Q, R, m) = 1, then { T (mod m)}0 is simply periodic. 
The proof of this theorem is s imilar to that of Theorem c and is left to the reader . 
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