ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY
Lock Haven State College, Lock Haven, Pennsylvania

Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics Department, Lock Haven State College, Lock Haven, Pennsylvania 17745. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, solutions should be submitted on separate signed sheets within two months after publication of the problems.

H-221 Proposed by L. Carlitz, Duke University, Durham, North Carolina

Let \(p = 2m + 1 \) be an odd prime, \(p \neq 5 \). Show that if \(m \) is even then

\[
\begin{align*}
F_m &\equiv 0 \pmod{p} \quad \left(\frac{5}{p} \right) = +1 \\
F_{m+1} &\equiv 0 \pmod{p} \quad \left(\frac{5}{p} \right) = -1
\end{align*}
\]

if \(m \) is odd, then

\[
\begin{align*}
L_m &\equiv 0 \pmod{p} \quad \left(\frac{5}{p} \right) = +1 \\
L_{m+1} &\equiv 0 \pmod{p} \quad \left(\frac{5}{p} \right) = -1
\end{align*}
\]

where \(\left(\frac{5}{p} \right) \) is the Legendre symbol.

A natural number, \(n \), is called semiperfect, if there is a collection of distinct proper divisors of \(n \) whose sum is \(n \). A number, \(n \), is called abundant if \(\sigma(n) > 2n \), where \(\sigma(n) \) represents the sum of the distinct divisors of \(n \) (not necessarily proper). Finally a number, \(n \), is called weird* if it is abundant and not semiperfect.

Are any Fibonacci or Lucas numbers weird? (All known weird numbers are even.)

Let \(S \) be a set of \(k \) elements. Find the number of sequences \((A_1, A_2, \ldots, A_n) \) where each \(A_j \) is a subset of \(S \), and where \(A_1 \subseteq A_2 \), \(A_2 \supseteq A_3 \), \(A_3 \subseteq A_4 \), \(A_4 \supseteq A_5 \), etc.
Let

\[
A = \begin{bmatrix}
1 & 1 & 1 & 1 & \cdots \\
1 & 2 & 3 & 4 & \cdots \\
2 & 5 & 9 & 14 & \cdots \\
3 & 10 & 22 & \cdots & \cdots \\
& & & & \cdots & \cdots & \cdots & \cdots & \cdots & n \times n
\end{bmatrix}
\]

denote the Fibonacci convolution determinant, and

\[
B = \begin{bmatrix}
2 & 3 & 4 & \cdots & n + 1 \\
5 & 9 & 14 & \cdots & \cdots \\
10 & 22 & \cdots & n \times n
\end{bmatrix}
\]

where the first row and column of A have been deleted. Show

(i) \(A = 1 \) and

(ii) \(B = n + 1 \).

Proposed by Guy A. R. Guillotte, Quebec, Canada.

Let \(p \) denote an odd prime and \(x^p + y^p = z^p \) for positive integers, \(x, y, \) and \(z \). Show that for a large value of \(p \),

\[
p \leq \frac{z}{z - x} + \frac{z}{z - y}
\]

Also show that

\[
p < \frac{z}{z - x} + \frac{z}{z - y}
\]

(i) Let \(k \) be a fixed positive integer. Find the number of sequences of integers \((a_1, a_2, \cdots, a_n) \) such that

\[
0 \leq a_i \leq k \quad (i = 1, 2, \cdots, n)
\]

and if \(a_i > 0 \) then \(a_i \neq a_{i-1} \) for \(i = 2, \cdots, n \).

(ii) Let \(k \) be a fixed positive integer. Find the number of sequences of integers \((a_1, a_2, \cdots, a_n) \) such that

\[
0 \leq a_i \leq k \quad (i = 1, 2, \cdots, n)
\]

and if \(a_i > 0 \) then \(a_i \neq a_{i-1} \) for \(i = 2, \cdots, n \); moreover \(a_1 = 0 \) for exactly \(r \) values of \(i \).
Let k numbers p_1, p_2, \ldots, p_k be given. Set $a_n = 0$ for $n < 0$; $a_0 = 1$ and define a_n by the recursion

$$a_n = \sum_{i=1}^{n} p_i a_{n-i} \quad n > 0.$$

1. Find simple necessary and sufficient conditions on the p_i for $\lim_{n \to \infty} a_n$ to exist and be a) finite and non-zero, b) zero, c) infinite.

2. Are the conditions: $p_i \geq 0$ for $i = 1, 2, \ldots, p_i > 0$ and

$$\sum_{i=1}^{n} p_i = 1$$

sufficient for $\lim_{n \to \infty} a_n$ to exist, be finite and be non-zero?

Comment by the Proposer

This problem arises in the following probabilistic situation. We have a k-sided die or other random device such that the probability of i occurring is p_i. We have a game board consisting of a sequence of squares, indexed $0, 1, 2, \ldots$. Beginning at square 0, we use the die to determine the number of squares moved, as in Monopoly or other board games. Then a_n gives the probability of landing on square n. Since the average (expected) move is

$$E = \sum_{i=1}^{n} i \cdot p_i,$$

one would hope that $a_n \to 1/E$. If all $p_i = 1/k$, this can be seen.

The restriction $p_i > 0$ (or some more complicated restriction) is necessary to avoid situations such as $p_1 = 0$, $p_2 = 1$ which gives $a_{2n} = 1$, $a_{2n+1} = 0$ for all n.

Editorial Comment

Since p_i would not be defined for $i > k$, an infinite set of numbers $\{p_1, p_2, \ldots\}$ would have to be given.