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1. INTRODUCTION

As is customary, we define the Fibonacci and Lucas numbers by means of

Fp=0 F4 =1 F =F |, +F , = 2
and

Ly=2 Ly=1, L =L  +L , o= 2,

respectively. It is well known that a positive integer N has the unique representation
(1.1) N =F  +F +- +F,

where r = r(N) and the kj satisfy

(1.2) kg =2, k., -k . =2 G =2,3,*, 1.

The representation (1.1) is called the canonical or Zeckendorf representation of N.

It is proved in [1] that the set A, of integers {N} with k; =t canbe described in the
following way:

A2t {abt—la(n) In =1, 2, 3’ .,.}
A ={bta(n)ln=1, 2, 3,_,,} t =1,2,3, °°),

Il

(1.3)
2t+1

where juxtaposition of functions denotes composition and
(1.4) am) = [an], b) = [e’n], « =311+ N5)

For the Lucas numbers it is known that every positive integer is uniquely representable
in either the form

(1.5) N=L0+Lk1+Lk2+--- + L, s
where
(1.6) k; = 8, k]. - kj_l = 2 (G = 2,8, 2+, 1)

or in the form

* Supported in part by NSF Grant GP-17031.
337
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(1.7) N=Lk1+Lk2+”' + Lg .
where now
(1.8) ky = 1, kj-kj_l = 2 G =238 ,1;

but not in both (1.5) and (1.7).

Let Bj denote the set of positive integers representable in the form (1.5) and let B,
denote the set of positive integers representable in the form (1.7) with k; = t. Then it is
proved in [2] that

(1.9) ;Bo = {a%m) + n |n =1,2,8, "} ’
B; = {a%() +n-1|n =1,2, 3, }
and
(1.10) { By, = {btﬁla(n) + bta(n) ln =1,2,83, -+-} € =128 )
Bot+1 = {abt_la(n) + abtan) |n =1,2,3, -}

The functions a(n), b(n) satisfy numerous relations that are consequences of the

following.

(1.11) b@ = a@) +n = a’n) +1
and

(1.12) ab(n) = a(m) + b(n) = bam) + 1.

Moreover if the function e(n) is defined by

(1.13) e® = F_,

where N is defined by (1.1), then we have
(1.14) ea(n) = n, ebn) = a@m) .

Comparison of (1.9) and (1.10) with (1.3) suggests that it would be of interest to intro-
duce the function
(1.15) cn) = al) + 2n = b@) + n.

It is not difficult to show that bc() - cb(n) = 0 or 1. We accordingly define two strictly
monotonic functions r(n), s(n) by means of

(1.16) ber(n) = cbr(), bes(n) = cbs®) + 1.

The functions r(n) and s(n) are complementary, that is, the sets {r(n)} and {s@®)} con-
stitute a (disjoint) partition of the positive integers.

The present paper is concerned with the properties of r(n) and s(n) and various re-
lated functions. In particular we define
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(1.17) u'(n) = bsm) + 1

and

(1.18) t'(m) = as(m) +n.

It then follows that

(1.19) (s) = (@b) U (%) ;
more precisely

(1.20) st = ab, st' = a%u',

where t and t' are complementary functions. Also

{c(n) € (@ =n € (@%) y (bs)
cn) € (b) &2 n € (br) U (s)
this is equivalent to

ca’n) € @ ( € (1)
(1.21) {

cb(n) € (b) n € ()

It should be noted that the unions above are disjoint unions.

In these formulas we have used the symbol (f) to denote the range of the function f. If
f and g are two strictly monotonic functions such that (f) C (g), itis clear that there ex-
ists a strictly monotonic function h such that f = gh. In particular since (b) C (a), there
exists a function v such that b = av. Also since (cs) C (b), there exists a function z

such that cs = bz. Similarly we define functions p, x, y, w by means of
(1.22) es(n) = rp) = ux(n) = uwy(@) ,

so that x = wy. Among various relations among these functions we cite in particular the

following.

(1.23) z(n) = c's(n)

(1.24) zt(n) = ca(m) + 1, zt'(n) = ba(n)
(1.25) tb?(m) = t() + bA(n)

(1.26) t'tn) = th@m) - 1

(1.27) yt(n) = 2n

(1.28) v(n) = w(2n)

The formula
(1.29) eca(n) = cm) - 1

proved in Section 3 can be thought of as one of the basic results of the paper. It was origin-

ally proved in an entirely different way.
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We may also note the formula

[¢ o]
(1.30) © = U @em) ,
k=0

which is a consequence of (1.19). There are similar formulas for (r), (u), (u').

For the convenience of the reader a summary of formulas is included at the end of the
paper as well as several brief numerical tables.

It should be remarked that almost all the theorems in this paper were suggested by
numerical data. Thus it seems plausible that further numerical data may suggest additional
theorems. The authors have prepared rather extensive tables which will be available from

the Fibonacci Bibliographical and Research Center.

2. NOTATION AND PRELIMINARIES

If f is a function on the set N of positive integers, we let (f) denote the range of f,
that is
® = {f@) ln € N} .
If n, m € N, then
no < £ < m)

is the number of integers j such that n < f(j) < m.
If f has the property that f(n +1) - f(n) > 1 forall n€ N, then we say that f is
separated.
If f is a function such that N/ (f) is infinite, we may define a strictly monotonic func-
tion f' by:
(™M =N/ .

This function f' is called the complement of f.
2.1. Theorem. If f is a strictly monotonic function from N to N such that N/ (f)
is infinite, then
f(n)

]

n + n( < f))

f'tn) = n +n( < f'@)

Proof. Suppose that f(n) = k. Since f is strictly monotonic we have k > n. Clearly
n(f <k) =n -1 and by definition of f', some n(f' < k) = k -n. Thus

fm) =k =n+n@ < k) =n+nf < f@)).
A similar argument shows that

fin) = n +n( < £1())
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2.2 Theorem. If f is a strictly monotonicfunction and, for some n and j we have
f1(j) = f(n) - 1, then j = f(n) - n.
Proof. We have
f1G) = f@) -1 = n + @ < f@) -1

]

n+nfr < G+1 -1

n+j-1.

Then f(n) -1 =n+j-1 and j = f(n) - n.
2.3. Corollary. [3, Th. 3.1]. If f is a separated function then for all n > 1,

fiifn) - n = fn - 1
and
f1fn) -n+1) = fn) +1.

Proof. This is a direct consequence of the fact that if f is separated, then f(n) -1 &

(f') and f() +1 & (7).
2.4, Theorem. If f is separated, then for all n > 1,

n(f1) < f < f(f'@) + 1) = n.

Proof.
n(f < fE@) + 1)

]

ffn) = n +nf < f'(n))

Nt < f1@)+ (@ < £ < (@) + 1)

and the theorem follows.
2.5. Definition. If f and g are functions, we use juxtaposition to mean composition
of functions, that is,
fgn) = flgh)) .

2.6. Theorem. If f, g, h and k are all strictly monotonic, and if f = g'h and g =
f'k, then
frk' = gth'.
Proof. We have
) = @ U (gh) = (k) U (gh")
and
() = k) U (k) .

Since all functions are strictly monotonic, these are disjoint unions, and hence

(f'k') = (g'h") .
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%
Again using strict monotonicity, we must have

frk' = gth'.
2.7. Definition. If
i,
exists, we set
c, = 1 fn) .

f N—so0 N

2.8. Theorem. If f and f' are complementary strictly monotonic functions and

lim o)
Ne—soc N
exists and # 0, then
lim £n) ()
N3 N
exists, and we have
) T+t =1
f f1
(ii) C + Cp = Cpr Cp

2.9. Definition. If 5 is any real number, then [p] is defined to be the greatest in-
teger less than or equal to p, and {p} denotes p - [p].
2.10. We shall make extensive use of the functions a, b, ¢, e defined in [1]. For

convenience, we recall the definitions, and state some properties, of these functions.

(2.11) a(n) = [en] where a = (1 + N5)
(2.12) b)) = [¢?n] = am) + n

(2.13) cin) = [@ + 2n] = a@ + 2n.
(2.14) b) = a’() + 1

(2.15) ab(@) = a@) + bl®) = balm + 1
(2.16) ab() + 1 = a(b() + 1)

(2.17) a’(n) + 1 = a@@ + 1)

n g (@« an +1) = am) + 2
(2.18) b(n + 1) = bm) + 3
cln +1) = c) + 4

n € ® =an+1) = amn +1
(2.19) bln + 1) b)) + 2
cln + 1) cn) + 3

]
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2.20. Theorem. Suppose that

an = m + ¢ 0 < g <1

om = k + €9 (0 < €9 < 1)
then
€9 + ey = 1+ (S

Proof. We have

a'n = om +ae; = (@+ 1)n = an +n

I

m+ € +n

k+€2+Q€1.

From the definition, m = a(), k = a’(n) and k+1 =bn) =m+n = [e?n]. Thus k+1 =
m +n and so
k+1+¢ =k+ e +ag
and the result follows.
2.21. Theorem [4]. For all n,

@) n€ @ ={m}>31
a,Z
(ii) ne (e {m} <t
0!2

2.22. Theorem. We have
Na < n) = a(m) - n.
Proof. This follows from the fact that a(n +1) -a() is 1 if n € (b) and 2 if n€
(a). Since a(l) = 1, we have a(m) =n+ N < n).

The following formulas follow from 2.22.

nb < n =n-1-n@ < n
(2.23) =n-1- (a@ - n)

=2n -1 - af .
(2.24) nb < a@) = am -n =n@ < n).

Recall that the function e was originally defined in terms of the Zeckendorf represen-
tation of n. In {1, Th. 6] it is shown that
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eb() = a(n)
(2.25)

ea(n) = n .
We list some properties of e.
(2.26) em) = n(@a £ n)
(2.27) en) =n@a < n+1) =amh +1) - (@ +1)
(2.28) o) = [u:l

L o

3. BASIC RESULTS

3.1. Theorem. Forall n, 0 < bc(n) - cb(n) < 1.
Proof. Recall that b() = [a?n] by (2.9). Thus

bec(n)

[azc(nﬂ = [az@(n) + n;]

[e®bm) + o?n]

[2[e?n] + o’n]
and

]

cb(n) b(b(n)) + bln)

[[a™n]] + [on] .

il

It is evident that bc(n) > cb(n), and 0 < bc() - cb(n) < 1.

3.2. Corollary. If cb(n) € (b), then cb@®) = bc@). I cbm) € (a), then chh) =
be(n) - 1 = a%e(n).

Proof. Since forall r, b(r+1) - b(r) 2 2, thenif cbln) € (b), it follows that cb(n)
= befn). If cb(n) € (a), then cb(m) = be(m) - 1 = a’c).

3.3. Definition. We define two strictly monotonic complementary functions r and s
by means of

]

be (n) }
(3.4)

{(r) = {n ‘cb(n)

(s) = {n ‘cb(n)

bc(n) - 1} -

3.5. Theorem. For all n, car(n) = acr(n) -1 and cas(n) = acs(n) - 2.

Proof. By definition, cbr(m) = ber(n), that is,

abr() + 2br() = acr() + cr(@) .

Then

It

acr(n) abr(m) + 2br(n) - cr(m) = abr(n) + br@) - r(n)

"

abr() + ar(n)
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and

[

car(n) bar(m) + ar(n)

abr() - 1 + ar(n)

acr(n) - 1

Similarly, cas(n) = acs(@) - 2.

3.6. Theorem. If ca(n) € (a), then ca(n) = al(cn) - 1) .

Proof. Case 1. if n € (r), then ca(n) = acn) - 1, and evidently if ca(n) € (a), we
must have ca() = a(c(n) - 1). ‘

Case 2. If n € (s), then ca(m) = ac(m) - 2. Thus if ca(n) & (a), it must be

that ca(n) +1 € (b) (by (2.15)), and hence ca(n) = a(c(n) - 1).

3.7. Theorem. For all n, cs(@) € (b).

For the proof of this theorem, we require some preliminary lemmas.

3.8. Lemma. If n € (s), then a(n) & (s).

Proof. Let n € (s). Then cbl) = a’c(n) and ac() = ca(n) +2. Thus

a’c(n) = afact)) = a(ca() + 2) .
But also
cb(n) = ca’(n) + 4 = clca(m)) + 4 ,
by (2.15).
Now suppose that ca®(n) € (a). Then by Theorem 3.6, ca%(n) = a(ca(n) - 1). Since
three consecutive integers cannot all be in (a), it must be that ca?(n) + 2 € (b), ca’(n) +1
€ (@), and ca(n) +3 € (a). Then

ca?(n) + 3 = a(cam) + 1)
ca’(n) +1 = afca())
ca?(n) = aca(n) - 1 = cafa(n))

and by Theorem 3.5, a(m) € (v).

On the other hand, if ca’(n) € (b), we must have ca’(n) +1 < (a), and precisely one
of ca?() +2, ca?(n) +3 must be in (b). Thus ca?(n) +1 = aca(n) and so acaf) - 1=
ca(a(n)) and by Theorem 3.5, a(n) € (r).

3.9, Lemma. For all n, cabr() = bacr(n) and cabs(n) = bacs(@) - 2.

Proof. The proof is manipulative. We show first for all n, cab(@) = 7a(n) +4n - 1,

as follows:
cab(m) = bab(n) + ab(n) by (2.10)
= ab*(n) - 1 + ab(n) by (2.12)
= ab(n) + b%() - 1 + ab() by (2.12)

= 2abm) - 1 + ab(n) + bn) by (2.9)
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cab(n) = 3ab() ~ 1 + al) +n by (2.9)
= 3(atn) + b)) - 1 +al) +n by (2.12)
= 4a() + 3(an) +n) -1 +n by (2.9)

1

7an) + 4n - 1 .

Similarly, using the fact that acr(n) = car(@) + 1, we get cabr(n) = 7ar(n) +4r(n) - 1, and
from acs(n) = cas(n) +2, we get cabs() = 7as(n) + 4s(n) + 1, and the result follows.
3.10. Lemma. Forall n, beb(n) = cb?(n), thatis, (b) C (x).
Proof. We first have, for all n,

cb?(n) = ab’(n) + 2b(n)

]

ab(n) + 3b%(n)

]

ab(n) + 3(ab(n) + b))

]

4ab(n) + 3bn)

Case 1. n € (r). Then beb{n) = bPcm) and

bcln)

abc(n) + be(n)

= ac(n) + 2bc(n)

= cafn) + 1 + 2cb(m) (by Corollary 3.2
and Theorem 3.5)

= ab(n) + a(@) + 2(@b@) + 2b®))

= 3abm) + aln) + 4b(n)

= 4ab(m) + 3b(n)

Case 2. n € (s). Then cb(n) = a%c(n) and we have

beb(n)

It

balc(n) = balac))
= ab(ac)) - 1

= a%c(n) + bac() - 1
= cbin) + abecm) - 2

= cb@) + ac(n) + beh) - 2

(by Corollary 3.2

= chl) + caln) + cbl) + 1 and Theorem 3.5)

= 2(ab@m) + 2b()) + (ba@®) + a()) + 1

= 3ab(n) + 4b(m) + am)
= 4ab(n) + 3b(n)
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3.11. Lemma. We have (s) C (a).
The proof follows immediately from Lemma 3.10.

Proof of Theorem 3.7. If n € (s), then n = a(j), for some integer j, where j & (s)

by Lemma 3.8. Since n € (s), we have

ben) - 1 = cb®)
ben) + 2 = ch@n) + 3
= c(b(n) + 1) by (2.16)
= c(ba(j) + 1) = cab(j) = bac(j) by (2.12) .

Thus be(@) +2 &€ (b), which implies that c(n) € (b) by (2.19). This completes the proof of
Theorem 3.7.

3.12. Corollary. For all n, cas(n) € (a).

Proof. By Theorem 3.8, cs(n) = b(j) for some integer j. Then

[

cas(n) acs(n) - 2 by Theorem 3.5

ab(j) - 2

a3(j)

I

3.13. Theorem. If ca() € (b), then caln) = alchm) - 1) +1.
Proof. We need only consider n € (r), sinceif n € (s), ca() € (a). Thus, if n €
(r), caf(n) = acl) - 1. If ca(m) € (b), then ca(m) - 1 = alc(n) - 1) and the result follows.

Recall that the function e satisfies

]
=]

e(am))
e(b(n))

a(n)

Note that e(n) = y(@ < n).
3.14. Theorem. For all n, eca@®) = c@) - 1.
Proof. Wehave shown that if ca(n) € (a), then ca( = alc() - 1), and if cam) € (b),
ca(n) = alc(n) - 1) + 1. In either case, eca(m) = c() - 1.
3.15. Theorem. For all n, ecb() = ac(n).
Proof. Case 1. If n € (r), cb() = bc) and ecb@®) = ebc(n) = acn).
Case 2. If n €(s), ch(n) = a%e(n) and ech(n) = e(a’clm)) = ac(n).

4. THE FUNCTIONS c', ¢, ¢', ¥, !

In this section, we consider some functions which arise in a natural way from the re-
sults of Section 3, and give some of their properties. Recall that c' denotes the comple-

mentary function to c¢. We shall require some properties of ¢!, given in the following.
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4.1.. Theorem. We have
(i) c'b(n) = cfn) - 1
c'fb() - 1) = c(n)

c'(bn) + 1) = cln) + 1

1
no

c'bm + 2) = ch) + 2

(ii) cn) +c'@) = 5n - 1
(iii) c'n) = n + 1 < n)
(iv) c'a(p) = c'(a(m +1) -1
W) clab(n) = ca(n) + 1 .

Proof. Since c'(c(n) -n) = c(n) -1 (by Theorem 2.2) and c() -n = b), we have
c'b(n) = ¢m) - 1. The rest of (i) follows from the fact that cn +1) -c(n) = 3 for all n
(see (2.15) and (2.16)).

The proof of (ii) is straightforward. For example,

cb() + c'b(m) = ab(m) + 2b(n) + cn) - 1
= a(@) + 4b() +n - 1

= 5b) - 1 .

To see (iii), use (i) and the fact that n(b < b)) =n-1 and nb < a(®)) = al) - n (see
(2.20)). Both (iv) and (v) follow from (i).
4.2, Theorem. For all n, ec() € (c').
Proof. Casel. If n € (a), say n = a(j), then ec(n) = c(j) -1 = c'b(j).
Case 2. If n €(b), say n = b(j), then ecm) = ac(j). We have seen that
ac(j) is either ca(j) +1 or ca(j) + 2; in either case, ac(j) € (c').

We may now define a strictly monotonic function ¢ by the equality
ecn) = c'¢@) .

The complementary function ¢' is also of interest.
4.3, Theorem. For all n,

(1) ¢am) = b)
(ii) ¢obr(n) = abr(n)
(iii) Pbs(n) = abs() + 1.
Proof.
(i) eca(n) = c(n) - 1 = c'b(n) = c'¢aln)
(ii) ecbr(n) = acr(n) = car(n) + 1 = c'(bar() + 1)

c'(abr(n)) = c'¢br(n)
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(iii) ecbs(n) acs(n) = cas() + 2 = c'(bas) + 2)

c'(abs(m) + 1) = c'¢bs(n) .

4.4. Theorem. The function ¢' is separated.

Proof. We show that for all n, ¢(n+1) -¢@) < 2. It then follows that for all n,
o' +1) —¢'(n) = 2. Since (b) C (¢), then for all n, ¢ +1) -¢m) < 3. If ¢m) € (b?),
then ¢ +1) - o) = 2. If ¢() € (ba), then ¢@) +1 € (ab) and ¢() +2 € (ab + 1), and
it follows that either ¢(n) +1 or ¢(n) +2 isin (). If ¢(n) € (a?), then o) +1 = ¢ + 1)
and if ¢(n) € (ab), then ¢(@) +2 = ¢(n + 1). This completes the proof.

4.5, Theorem. If n is any integer not of the form n = as(j) +1, then. ¢'(n) = a?(n).
If n =as(j) +1 for some j, then ¢'(n) = a(a(m) - 1).

Proof. Since by Theorem 4.3 we have

@ = (b) U (abr) U (abs + 1)
it follows that

@ = (a?) U (abs)/(abs + 1) .

We next show that ¢'(as(j) +1) = abs(j) for all j. We have ¢bs(j) = abs(j) +1. Since
abs(j) € '), then by Theorem 2.2 we have

obs() - 1 = ¢'(Pbs(j) - bs(j))
o' (abs() + 1 - bs(i))
o' (as(j) + 1)

abs(j)

Next, if n = as(j) +1, then
a(a) - 1) = a(@@s(@ + 1) - 1) = a@%@G + 2 - 1) = a@¥(@ + 1) = abs()) .
Thus if n = as(j) +1, ¢'@) = a@) - 1). Now (¢") differs from (a?) only in that
¢'(astm) + 1) = al@@ - 1) = abs()

while a%(as(n) +1) = abs(n) + 1. Thus since ¢' and a? are strictly monotonic, we must have
¢'(n) = a%(n) for all n not of the form as(j) +1, and ¢'(n) = a(a(n) - 1) for n = as(j) +1
for some j.

It is now possible to define a new strictly monotonic function ¥ by Y@) = ed'(®).

4.6. Theorem. Y(n) = a(n) for all n not of the form as(j) +1, and Yn) = a@) -1
for n = as(j) +1. Thus P(as() +1) = a(as(f) +1) - 1 = bs().
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Proof. This follows from Theorem 4.5, and the definition of the function e.
Now ¥', the complementary function to ¥, is also strictly monotonic, and we have

W = () U (bs + 1)/ (bs) .

4.7. Theorem. Y'r(n) = br(n) and Y'si) = bs) + 1.
Proof. We first show that ¥'s(n) = bs() + 1. By Corollary 2.3, we have, since bs(n)
+1 €@, and bsh) € ),
bs) + 1 = P'(Ylashm) + 1) - (@s@) + 1) + 1)

= Y'(bs(n) - as(n))
= Y'(s(n)) .

The rest of the proof is analogous to the proof of Theorem 4.5.
Using the results of this section, we can easily derive various formulas.
4.8. Theorem.

@ ¢s(n) = bes(n)

(ii) pa(m) + ¢'an) = ¢¢ra) - 1
(iid) ¢'9s(n) = abs(n)

iv) 00's(m) = abs() - 1

W ¢¢'rm) = bar(n)

(vi) ¢s() + c'st) = 3s@) .

5. THE FUNCTIONS r AND s AND SOME RELATED FUNCTIONS

In this section, we consider the functions r and s in detail, and introduce some im-
portant auxiliary functions.

5.1. Theorem. The function s is separated.

Proof. Suppose, on the contrary, that consecutive integers n, n +1 are in (s). Then
both n, n +1 must be in (a) by Lemma 3.10, and both c(n) and c(n + 1) must be in (b)
by Theorem 3.6. Since n, n+ 1 are both in (a), we must have n = ab(j) for some j.
Then

cln + 1) = c(ab(j) + 1) = cab(j) + 4.

If j € (r), then cab(j) +4 = bac(j) +4, and if j € (s), then cab(j) +4 = bac(j) +2. In
either case, since for any integer k, ba(k) +2 and ba(k) +4 areboth in (a), we musthave
c(m +1) € (a), whichis a contradiction. Thus s is a separated function.

5.2, Lemma. (ab) C (s).

Proof. The proof is manipulative like the proof of Lemma 3.10. Using the definition

c(n) = a(n) +2n, one first shows that, for all n,



1973] SOME ARITHMETIC FUNCTIONS RELATED TO FIBONACCI NUMBERS 351

cbab(m) + 1 = Tab() + 4b() - 3.

Case 1. n € (r). Then we have

cbm) = be) (Corollary 3.2)
acln) = ca(m) +1 (Theorem 3.5)
cab(m) = bac(n) (Lemma 3.9) .

Then
bcab(n) = blac(n)

= a’c(n) + 2bac(n)

= bc) - 1 + 2(@abc(m) - 1)

= ch@m) - 1 + 2(ac(n) + bc() - 1)

= cb@) - 1 + 2(ca) + 1) + 2ch(n) - 2

= 3(abm) + 2b@)) + 2(ba) + a@) + 1) - 3
= bab(n) + 6b() + 2a(n) - 3

= Tab() + 4b(m) - 3

= cbhab(m) + 1
Case 2. n € (s). Then
cb) = bchm) - 1 (Corollary 3.2)
ac(n) = cafn) + 2 (Theorem 3.5)
cab(n) = bac() - 2 (Lemma 3.9) .

By Corollary 3.12 we have ca(n) € (a), and since ca(p) +2 = ac(n), we have ach) -1 €
(b). By Theorem 3.7, we have c() = (b), say c(n) = b(j). Then

]

cab(n) bab(j) - 2

b(ba(j) + 1) - 2

1l

]

pla() +2 - 2

]

b2a(j)

Thus bac@m) - 2 € (b), and so bac(n) - 2 = b(ac(n) - 1). Now

bcab(n)

b*ac(n) - 1)

= ab(ac(n) - 1) + blac(n) - 1)

= afac(n) - 1) + 2b(ac(n) - 1)

= afca(n) + 1) + 2b(cs(m) + 1) .
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Since ca(n) € (a), we have ca(m) = a(c(n) - 1), and so

bcab(n) a(a(cw) - 1) + 1) + 2b(a(c) - 1) + 1)

= a¥(c) - 1) + 2 + 2[allcm) - 1) + 1) +alcm - 1) + 1]
= 3(a%(c) - 1) + 2) + 2alct) - 1) + 2

= 3(lcm) - 1) + 1) + 2alc@) - 1) + 2

= 3b(c(n) - 1) + 2a(cm) - 1) + 5

= 3b(cn) - 1) + 2can) + 5

Since c(m) € (b), then c() - 1 € (a) and we have bc(n) = b(c) - 1) + 3. Then

becab(n) 3(bc(n) - 3) + 2cam) + 5

3(cb(m) - 2) + 2(ba(m) + a(@m)) + 5

3(ab(n) + 2b(n) - 2) + 2a(n) + 2abMm) - 2 + 5

]

5ab(n) + 6b(m) + 2a(m) - 3

7ab(n) + 4b(m) - 3

cbab(n) + 1 .

This completes the proof.
5.3. Lemma. For all n, a?(bs(n) +1) € (s).
Proof.

cb(@(bs@) + 1)) = ch(b?sn) + 1)

= c(b®st) + 2)
= cb3st) + 7
= b2chs() + 7
= [blalacs(n)) + 3] + 4

= ab?(acs(n)) + 4

But ab?(n) + 4 = a(bab(n) +1) for all n, so cb(@%(bs() +1)) € (a), and this completes the
proof.

5.4, Lemma. If a%(n) € (s), then n = bs(k) +1 for some integer k.

Proof. First note that ab(b() + 1) = ab*n) +3, and ab(a() +1) = aba(n) + 5. Since
s is separated, if a%(n) € (s), there must be some integer a(j) so that aba(j) + 1< a2(n)
< ab(a(j) +1) - 1. Thus

a’n) = aba(j) +3

and
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a’(n) + 2 = a(am) + 1) = ab@() + 1).

Then
am) +1 = b(a@ + 1) = ba@) + 3 = ab(G) + 2
and
an) = a(@ + 1)
so that

n="hb +1.
We now show that j = s(k) for some integer k. First ca?(n) € (b) gives:
ca?(n) = ca’(b(j) + 1) = alcabG) +1) - 1) +1 € (b)
so that ca(b(j) +1) - 1 € (a). We also have:
ca(b(j) + 1) = c(ab(j) + 1) = cab(j) + 4
and we have seen before that cah(j) + 4 is always in (a). Thus
ca(b() + 1) = alc®d@ +1) - 1).
Now it must be that
ca(b@ + 1) - 1 = alcb@ + 1) - 2)
and hence
chb(l +1) -2 € (b)
by (2.7, (iii).). But
ch(@ +1) -2 =cb(l) +3-2 =2chbG+1 € b).
Thus be(j) = cb(j) +1 and j € (s). We now have the following:
5.5. Theorem. (s) = (ab) U (a%(bs + 1)).

We can now prove
5.6. Theorem. c(n) € (a) if and only if n € [(a) U (bs)]/ (s). .

Proof. Clearly if n € (bs), cm) € (@), andif n € (s), then c() € (b).

353

Also, if

n € (br), then ‘c(n) & (b). Thus, suppose n € (a)/(s). Then suppose ca?(j) € (b). Then
a()) £ (s), since cas(m) € (a) forall n. Thus cha(j) = bea(j). Now if ca’(j) & (b), then

ca?(j) = alca(j) - 1) +1 so that ca(j) - 1 € (a)., Then b(ca(j) - 1) + 3 = bea(j) and

cba(j) = c(@3@) + 1) = ca’(G) + 4 = blcal) - 1) + 3.
Then
cad(j) = blcaljh) - 1) -1 € (@) .

Now, since a%(j) & (a), we have
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ca(a?(j)) + 1 = aca?(j) ,

so that if ca?(j) € (b), then ca®(j) & (b). This is a contradiction, and the proof is complete.

5.7. Corollary. c) € (b) =n € (br) U (s) .
We now introduce some additional functions, defined as follows:

@) u'( = bsm) + 1
(5.8) (ii) t'@) = asm) + n
(iii) bzn) = cs(n)

We also have the corresponding complementary functions u, t and z'.
The reasons for considering these functions are made evident in the following theorem.

5.9. Theorem. We have

(i) @) = {n |22 € (s}
(ii) ) = {n|st) € @)}
® = {ols) € (@)}

]

(iii) stm) = ab(n)

(iv) st'(n) = a?(bs(n) + 1) = a%u'(n)
W) ztlh) = cs@) + 1

(vi) zt'(n) = cbs() + 1

(vii) z(n) = c's() .

Proof. (i) is clear from Theorem 5.5. To see (ii) we take (ii) as the definition of t
and t' and show that we then have t'(n) = as() +n. Inthe proof of Lemma 5.4, it was shown

that
abas(m) < a%(bs(n) + 1) < ablas(m) + 1)

for all integers n. From (ii), we have a%(bstn) + 1) = st'(n), and stas(n) = abas(n) (that
is, a%(bs() + 1) is the nth value of s of the form a%(bs(j) + 1), and abas(n) isthe as(n)tl"1
value of s of the form ab(j)). Now stas(n) = s(t'(n) - 1), sothat t'(n) = tas(m) + 1. From
Theorem 2.1, we have

t'm) = n +nt < t'@))

n +nt < tas@) +1)

1l

n + as(n)

Parts (iii) and (iv) follow from (ii).
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To see (v): Case 1. n € (r). Then from the definition, bzt(n) = cst(n) = cab(n)
bac(n). Then zt(m) = ac(n) = ca(m) +1 since n € (r).

Case 2. n € (s). Then bzt(n) = cst(n) = cab(n) € (b) and since n €(s), cab(n)
bac(n) - 2 = b(ac(n) - 1). Then zt(n) = ac(n) -1 = ca(n) +1 since n € (s).

To see (vi):

cst'm) = cal(bst) + 1)
= c(b(psm) + 1) - 1)
= c(b?s) + 1)
= ch?s(n) + 3
= bcbs(n) + 3
= ba’cs(n) + 3
= bla%s@) + 1)

So zt'(n) = a’cs(m) +1 = chs) + 1.
For (vii), we have first

c'stn) = c'ab(n) = cam) +1 = ztl) .
On the other hand,

cbsm) + 1 = c'(b?sth) + 1)

c'(b(bs(n) + 1) - 1)
c'@(bs) + 1))

c'st'(n) = zt'(n) .

5.10. Theorem. s(n) = c(n) if and only if t'(n) = b2(n).
Proof. We use the fact that t'(n) = as(n) +n, and consider the cases n & (r) and
n €(). If n € (r) and sn) = c(n), then

t'@) = acn) +n = ca@) +1 +n

ba(m) + 1 + a(m) +n

ab(n) + b(n)

b2(n)

If ne (s), then c(n) € (b) and c(n) = s(n) is not possible.
Now suppose t'(n) = b%(n). Then

as(n) + n = ab() + b(n)

= ab() + a@) +n
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and

1

as(n) ab(n) + a()

]

ca(n) + 1

Then ca() +1 & (@). If cam) +1 = ac(n), then we have c(n) = s(n) as required. If
ca(n) + 2 = ac(n), then we have n € (s), and ca() € (a), ca) +1 € (b) (Theorem 3.5).
Thus if as(n) = ca(m) +1, then n € (r) and c) = s().

5.11. Corollary. If s(n) = c(n), then n € (r).

5.12. Theorem. If s(n) = c(), for some n, then

st') + 1) = clt'@) + 1.
Proof. If s(n) = c(n), then we have n € (r) and t'(n) = b%(n). Then

ca’b(n) a(cab(n) - 1)

= a(bac(n) - 1) = a(adc())

= a’(a’c(n)) = baZc() - 1

= abac(n) - 2
= stac(n) - 2
= stas(n) - 2
= st'@w) - 5

On the other hand,
cla?bm)) = cpi@) - 1) = cb’@) - 4 .

Thus we have
cb®(n) = ab’(m) - 1

ch’(n) + 3 = sb2(n) + 2

st'm) + 2

I

s(t'(m) + 1) (by Theorem 6.5 (iv)) .

Since ch?(n) + 3 = c(b®(n) + 1) = c(t'@) + 1), the proof is complete.
5.13. Theorem. If s(n) = c(n), then z({m) = 5n - 1.

Proof. By Theorem 6.1 (iv) we have
z) = 2s() - es(n) = 3s() - (sn) + es(n)) = 3s) - (asm) + 1)
= 3c(n) - actn) -1 = 3an) + 6n - (ca(n) + 1) - 1 since n € (r)
= 3a(@) + 6n - 1 - b(n) - 2a()

= 5n -1



1973] SOME ARITHMETIC FUNCTIONS RELATED TO FIBONACCI NUMBERS 357

Other results of this nature are easily obtained; for example:
5,14. Corollary. If s(n) = c(n), then

(i) rb(m) = c¢'b@m) = ch) - 1

(ii) z'(dn - 1) = 5n - 2 .

It should be noted that since s(1) = c(1), for example, it follows that there are infin-
itely many values of n for which s(@m) = c(). We list the values of n < 101 for which
s(n) = cln):

Table 1

n 1 6 9 22 40 43 48 56 61 64

sin) = c) 3 21 32 79 144 155 173 202 220 231

We note that t'(1) +1 =6 and t'(6) +1 = 40, and t'(9) +1 = 61, while t'(1) +4 =9,
t1(6) +4 = 43, t'(9) +4 = 64. One might conjecture that if s(n) = c@), we have not only
s(t'(n) +1) = c(t'(n) +1), butalso s(t'() +4) = c(t'@) + 4).

Using the fact that (s) = (ab) U (a®u') where (u') = (bs + 1), we may express (s) as
an infinite union as follows:

5.15. Theorem. We have

o0
© = U @amf) .
k=0

Proof. The proof is by induction. We first show that every x € (s) satisfies
(5.16) x = a@)b()
for some integers Kk,j.
For n = 1, we have s(1) = ab(1). Suppose n given, and for all k < n we have
(5.17) s(k) = a(ap)’b(m)
for some integers j and m (depending on k). Now s(n) might be of the form ab(N), for

some N, in which case s(n) satisfies (5.16), or else s() = 2?u'(N) for some N. In the
latter case, we have

u'(N) = bs(N) + 1

and since s() = a%u'(N), it must be that N < n. By the induction assumption,

s(N) = a(a?)b(m)

for some integers j and m, and so
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]

s(n) a%u’ (N)

= a’bsMN) + 1)

= a%(ba(a’))b(m) + 1)
= a2(ab(a?b)’b(m))

= a(azb)jﬂb (m)

This completes the induction, and we have

o0
(5.18) ©® c | @amn
k=0

To show inclusion in the other direction, let m be a fixed integer. We show by induc-
tion that every integer of the form

(5.19) K = a(azb)kb(m) (k = 0’ 1, 2, "')
satisfies K € (s).
k

When
a@)5b) € (s), say

= 1, we have ab(m)€ (s). Suppose for some integer k >1 we have
2.,k
s(N) = a(a®h) b(m) .

Then a*u'(N) € (s), and since

]

a2(bs(N) + 1) = a(ba(ab)blm) + 1)

a2(ab (a%b) “(b(m))
k+1

= a(a?b) “b(m)
oK+
we have a(a’h)” "b(m) & (s). Thus for all m, we have

{a@n) bm) |k = 0,1, 2, **+ } C (9.

This completes the proof.
Using Theorem 5.15 and the fact that (r) U (s) = M, it is easy to prove

5.20. Corollary.

o0 v
@ = (B U [U (a(a%)kab)] U [U (a(azb)ka3)]
k=0 k=0

Since u'(n) = bs) +1 (=1, 2, ---), we have
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5.21. Corollarx.

[+7e]
@) = | @bty .
k=0

In a similar fashion, one can find "infinite union" formulas for many of the other func-
tions mentioned in this paper. However, we have not been able to give any such formula for
tr.

Theorem 5.15 suggests the definition of a set of functions { fk} as follows:
(5.22) s(f, ) = 2(a2) b() .

It is evident, for example, that fj(n) = t(n). The functions fk are completely described in
the next theorem.,

5.23. Theorem. For all n, fk(n) = (t')kt(n).

Proof. The proof is by induction on k. It is clear that fy(n) = t(n). Suppose for some
k > 0, we have
(5.24) f @ = )t h=1,2,3 ).
Then

st'(f, ) = az(bs)fk_l(n)) +1)

= a’(bata’h)* o) + 1)

by the induction assumption. This gives

It

str(f,_ @) = at(ab(ab) b(m)

2(a%) b )

and it follows that
fk(n) = t'fk_l(n) .

Then for all k, we have fk(n) = (t')kt(n). This completes the proof.
In Section 6, we shall show that t't(n) = tb®®m) —1 and also t't{n) = t(b%(m) - 1) +1
(Theorem 6.3). In view of this, we have the following inequalities for the functions fk .

5.25. Theorem. For all integers j and k, k > 0,

£ BP0 -1 < £0) < fk_l(bz(j)) .

In addition, if
£ 102G - 1) < fm) < £ 0*))
then m = j.
Proof. Since t't(n) = t(b2@) - 1) + 1, we have

b 020 - D = @5l - ) = @ e - 0 < @05 ,

and since t't(n) = tb®(m) - 1, we have
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B, 00 = @05 ew2)

{tr

(t')k'l(t't(j) + 1) > (t')kt(j) .

To see that f, () is the only value of f, between fk~1(b2(j) - 1) and fk_l(bz(j)), consider
for example fk(j - 1). By the preceding argument,

5 2 (s _ 2(3 _
£G -1 < £ 0% - 1) < f_,0%G) - 1)
since f, , is strictly monotonic and b%(j - 1) < b%(§) - 1. On the other hand, we have
. 9 (s 9 (s
£6+1 > fk—l(b G+1 -1 > fk_l(b ()
since f , is strictly monotonic, and b%(j + 1) > b%(§) + 1. This completes the proof.

6. CONTINUATION

In this section, we give various formulas involving the functions introduced in Section 5.

6.1. Theorem.

(6] z(n) = c@z@ - s@)) +1

(i1) sn) = bz@ - s)) +1

(iii) az(n) - as(n) = es(n)

(iv) z{n) + es(n) = 2s(n)

) az(n) - as(n) = a(z@m) - s)) + 1.

Proof. (i) Case 1. zt(n) = ca(n) +1 and st(n) = ab(n). Then

zt(n) - st(n)

ca(n) + 1 — ab()

ba(n) + a(m) + 1 - ab(n)

= a(n)

and so zt(n) = c(zt(n) - st(n)) + 1.
Case 2. zt'(n) = cbs(n) +1 and st'(n) = a?(bs(n) +1). As above, we show
that zt'(n) - st'(n) = bs), and (i) follows.
To see (ii), we have

1l

z(n) c(z) - s(n) + 1

b(z(m) - s(n)) + zm) - sh) + 1

1

and this proves (ii).

For (iii), we have (since as(n) = s() + es(n) - 1)
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az(n) = ebzn) = ecs(n) = ecaes(n)

I

ces(n) - 1 = bes(n) + es(n) - 1

Il

aes(n) + es(n) + esn) - 1

(sn) + es(n) - 1) + es(n)

1l

as(n) + es(n) .

To see (iv), we use z() = c¢'sm) = sm) +nN( < s(n)). Then

z(n) - s) (st) - 1) - n(a < s))

sm) - [n@ < sm)) + 1]

1

sn) - es(n) .

Finally, (v) follows from
zn) = a(z(n) - s()) + 2(z(m) - sm)) + 1

a(z(n) - s(n)) = 2s) - zn) - 1

es(n) - 1

az(n) - as(n) - 1.

6.2. Remark. Theorem 6.1 could also have been proved by noting that z(n) - s(n) is
a monotonic function satisfying
(z -8) = (@ U (bs) .
6.3. Theorem.

(i) t'tn) = a’b(n) + t@)

(ii) thm) = t(n) + b%()

(iii) t't) = th’(m) - 1

(iv) ntm) < t < t) + b*@) = n.
Proof.

(i): by definition,
t't(n) = ast() + tn) = a’bm) + t) .

(ii): We know t(as(n)) = t(t'(n) -n) = t'(n) - 1 by Theorem 2.2. Then
t(ast(n)) = t'tn) - 1
t(a%b(m) )

t"tn) - 1
t(@bm) + 1) = t'tn) + 1 = a’b(n) + tn) + 1

th’m) = b2(n) + t(n)
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Statement (iii) follows directly from (i) and (ii), and statement (iv) follows from (iii) and
Theorem 2.4.

6.4. Theorem.

@ tsta(n) = t(n) - 1 + stal)
(ii) tstb(n) = ta(n) + stb(n)
(iii) tab(n) = te(n) + ab(n) - §
where §=0 if n € (b) and § =1 if n € (a).

(iv) taba(n) = t(n) - 1 + aba(n)
(v) tab%(n) = ta(n) + ab?(n).

Proof. For the proof, we require the following identities (See Section 2):

b%(n)

aba(n) + 2

ab?(n) b%a(n) + 3.

Since t'(n+ 1) - t'(n) =24 for all n, we have

tb? = k) =th? -k -1 for k=1, 2,3
and
to? +k) = th® +k for k =1, 2, 3.
To see (i), we have
tsta(n) = tab(m) = t(b3(n) - 2)

= tb¥(n) - 3

= t(n) + b%(n) - 3

= tln) + (b%@m) - 2) - 1
= t(n) + aba(n) - 1

= t(n) + sta(n) - 1

Statement (ii) follows similarly. Statements (iv) and (v) are simply restatements of (i) and
(ii). For (iii), note that ea(n) = n and eb(n) = a(n) and apply (i) and (ii).

It is of some interest to determine for what values of n the difference s(n + 1) - s(n)
takes on the value 2 (or 3, or 5), and similarly for t'(n +:1) - t'(n). The next theorem
gives a complete description of this.

6.5. Theorem.

(i) s(tb(n) + 1)

]

stb(n) + 3

(ii) s(tas(n) + 1)

1]

stas(n) + 3
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(iii) s(tar(n) + 1) = star(n) + 5
(iv) s(t'(n) + 1) = st'() + 2
(v) trt'() + 1) = t't'() + 4
(vi) t'tar(n) + 1) = t'tar(n) + 9
{vii) t'(th(n) + 1) = t'tb(n) + 6
(viii) t'(tas(n) + 1) = t'tas(n) + 6 .

Proof. (i). stb(n) = ab?(n). Since ab?(n) +3 = ab(b(n) +1), s is a separated func-
tion, and (ab) C (s), and we must have ab(b(n) + 1) = s(tb(n) + 1).
(ii). stas(n) +3 = abas(n) +3 = a2(bs(n) + 1), and so stas(n) + 3 = st'(n).
This proves (ii).
(iii). star(n) +5 = abar(n) + 5 = ab(ar(n) + 1). We have seen that if a2(j) € (s)
and ab(n) < a%(j) < ab(n + 1), then we must have n € (as). This proves (iii).
(iv). s(t'(m) +1) = s(tas(n) +2), and we have

stas(n) = abas(n)
stas(n) + 3 = a%(bs) + 1) = st'(n)

stas(n) + 5 = ab(as(n) + 1) = s(t'@) + 1) .
This proves (iv).
(v). t't'() = ast'(n) +t'(n) and

(') + 1) = ast'(@ + 1) + ('@ + 1)

= a(st'(n) + 2) + t'(n) + 1.
Now st'(n) € (@%), so st'(n) +1 & (b) and we have

a(st'(n) + 2) a(st'(n) + 1) + 1

(ast'(m) + 2) + 1 = ast'(n) + 3.

1l

Then
t't'(m) + 1) = ast'(n) + t'(n) + 4 = t't'() + 4,

and (v) is proved.

(vi). t'(tar(n) + 1) = as(tar(n) + 1) + tar(n) +1

I

a(star(n) + 5) + tar(n) + 1

]

a(abar(n) + 5) + tar(n) + 1.

Now abar(n) + 2 € (b%?), so abar(n) +4 & (b) and abar(n), abar(n) + 1, abar(n) + 3 are all
in (a), while abar(n) +2 and abar(n) +4 are in (b). Then by 2.18 and 2.19,
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a(abar(n) + 5) = a(abar(n)) + 8
and we have
t'(tar(n) + 1)

a(star(n)) + tar(n) + 9

as(tar(n)) + tar(n) + 9

It

t'tar(n) + 9.

In a similar manner one proves (vii) and (viii).

6.6. Corollary.
(1) s(n) = 3 + 3n(tb < n) + 3(tas < n)
+ 5Ntar < n) + 2nt' < n)
(ii) t'n) = 5 + 4n(t' < n) + 6nitb < n)
+ 6n(tas < n) + 9(tar < n)

(iii) 2s(n) - t'(n) = 1 + nltar < n).

6.7. Theorem. b(n) = r(n - nu £ n)).
Proof.
(¥ = (B U @%/@%)

=) U (b-1/bu -1).
Thus

n{r < b)) 2n - 1 -n(u -1 < b))

2n - 1 - nw £ b).

The result follows, since b{n) € (v).

6.8. Corollary. bu'(n) = r(2u'(n) - n), and

bu@ - 1) = rQu'(®) -n - 1) = bis@).

Proof. The first statement is clear from Theorem 6.5. Since bu'(n) - 1 = a%u'(n) € (s),
it follows from the definition of r that r(2u'(n) -n -1 = bu'(n) - 1). Since u'(n) -1 =

bs(n), we have r(2u'(n) -n - 1) = b?s(n).

7. PROPERTIES OF OTHER RELATED FUNCTIONS

There are many additional functions which come about naturally from the consideration
of relations between the functions r, s, t, t', u, u', and =z, and the functions a, b, c, e.
In this section we define the most interesting of these functions and list some of their
properties.

7.1. Definitions.

(i). Since (es) C (r), we define a strictly monotonic function p by: es(n) = rp(n).
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(ii). Since (b) ¢ (u), we define a strictly monotonic function v by
b(n) = uv(n).
(iii). Since (es) = (b) U (abs + 1) C (u), we define a strictly monotonic function x by
es(n) = ux() .
(iv). Since (ab)' = (a?) U (b) C (W), we define a strictly monotonic function w by
(ab)' = (uw) .
(v). Since (es) C (ab)' = (uw), we define a strictly monotonic function y by
es(n) = uwy(@) .
(vi). Since (z) C (c') by Theorem 5.9 (vii), we define a strictly monotonic function )
by
c(n) = z'A(n) .

(vii). Put o() = pt(n). Define a monotonic function 7 by:

T(u@) = ou@) -1

Tw®) = oW'@))
(viii). Define a function K by:
Kn) = nb < c@)).

7.2. Theorem. pt) = 2n -n(u' < n)

pt'(n) = 2as(@) + 1 =n =< as(@ + 1).

Proof. Since est(n) = b(n) = rpt(n), it follows from Theorem 6.8 that pt(n) = 2n -
n(' < n). Recall that for all n, tas(n) = t'(n) - 1. Thus t(as(n) + 1) = t'(n) + 1. We know
rp(tas(n)) = b(as(n)) and rptlas(n) +1) = b@s) +1). Since as(n) +1 & (u'), it follows
that b(as(n) +1) -1 € (r), and so

rp(t@sm) + 1) - 1) = blasm) +1) -1
that is,
rpt'(n) = bas(n) + 1) - 1.
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By Theorem 6.8, we have

b@s(m) + 1) = r2@sm) + 1) -n@' < as@) + 1))
and so
bas(n) + 1) - 1 = r(2(@sn) + 1) -n@ < as@ + 1) - 1)
which gives
pt'(n) = 2as(n) +1 -n(u < as() + 1)

and this completes the proof.
7.3. Theorem. v(n) = b(n) -n(s < n).
Proof. We will show that, for all n,

(7.4) vib() + 1) = vbn) + 2
(7.5) v(s(n) + 1) = vs(n) + 2
(7.6) viam) + 1) = va() + 3 if  a@m € (s).

Then since v(1) = 2, we have

v(n) 2 +2n(b < n) +2n(s < n)
+3n(a < n) - 3n(s < n)

(7.7

2 +2@n -1 +n( < n) -n(s < n)

2n + (a(n) - n) -n(s < n)

I

b)) - n(s < n).

We first prove (7.4). Since b(n) = uv(n), we have b%(n) = uvb(n). Now b(n) +1 € (u),
since (u') = (bs +1) and b%(n) +1 # bs(j) + 1 forany n, j because (s) C (a). Thus

u(vb(n) + 1) = uvb(m) + 1
and
u(vb(n) + 2) = uvb(m) + 2.

Since uvb() = b%(n) and uvb(n) +2 = b%(n) + 2 = b(b@m) + 1) = uv(b() + 1), it must be that
v(b(n) +1) = vb(n) + 2, as required. To see(7.5), note that uvs(n) = bs(n), and uvs(n) + 1
= u'(n). Then u(vs(n) +1) = uvs(n) +2 and u(vs(n) +2) = bs(n) + 3. But bsh) + 3 =
b(s(n) + 1) by (2.15), that is,

u(vs(n) + 2) = uv(s(n) + 1)
and so
vs(n) + 2 = v(stp) + 1) .
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As for (7.6), suppose a(n) & (s). Then we show that none of uva(n) +1, uva() + 2,
uva(n) + 3 are in (u'). Since a(n) & (s), uva(m) +1 = ba(n) + 1 & (u'), since (u') =
(bs +1). Also, uva(n) +2 = ba(n) +2 = ab(n) + 1 by (2.13) andclearly ab() + 1 # bs(j) + 1
for any n, j. Finally uva(n) +3 = ba(n) +3 = b(a(n) + 1) & (u') and we have uva(n) +3 =
uv(a(n) +1). Thus v(a(n) +1) = va() +3 for a(n) & (s). This completes the proof.

7.8. Theorem.

I

v(n)

’ xt(n)

th'(n) au'(n) -n(s < as()).

[

Proof. From the definition, est(n) = uxt(n). Since st(n) = ab(n), we have b) =
uxt(n). On the other hand, uv(n) = b(n), and so xt(n) = v(n).

For the second statement, we require the fact that tas(n) +1 = t'(n) (this follows
from Theorem 2.2 and the fact that t'(n) -n = as(n)). Then

xtas(n) = vas(n) = bas(n) -n(s < as(n))
and also

uxtas(n) = uvas(n) = bas(n)
uxtas(n) + 1 = bas(n) + 1 = abs(n)

uxtas(n) + 2 = abs(n) + 1 = au'(n) .

Since est'(n) = uxt'(n) and est'(n) = au'(n), we must have uxtas(n) +2 = uxt'(n). Since
uxtas(n) + 1 = abs(n) € (u), we have

~

uxt'(n) = u(xtas(n) + 2

and so
xt'(n) = xtas(n) + 2
= basn) + 2 -n(s < as(n))
= au'(n) -n(s < as()) .
This completes the proof.
Table 2
n 1 2 3 4 5 6 7 30 50

t'(n) 5 (14 | 20 | 29 | 35 [ 39 | 45 | 207 | 342

xt'(n) 11 30 42 60 ] 79 91 416 686

7.9. Theorem. w(2n) = v(n) and w(2n - 1) = v(n) - 1.

Proof. Since (ab)! = (b) U (b -1) and (ab)! = (uw) it is clear that uw(2n) = b(n)
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and uw(2n - 1) = b(n) - 1. On the other hand, b(n) = uv(n), and so w(2n) = v(n). Since
bn) -1 €(n) for all n, we have bm -1 =uv(n) -1 = u(vin) -1) = uw(2n - 1), and
w(2n - 1) = v(n) - 1.

7.10. Theorem. w(n) = n +n(2a%1 < n).

Proof. We require the fact that

(u) = (abes) = (ab%) U (abau') .

It follows that (u) = (ab)! U (abau).
Note that abau(j) = ba’u(j) + 1. Then

ba’u(j) = uv@2u()) = uw(2au()) .

Since abau(j) & (uw) and
abau(j) + 1 = bu@G) - 1 € (uw) ,

we have

(7.11) w(2a%u(j) + 1) = w(2a?u()) + 2.
On the other hand, since (u) = (ab)! U (abau), if n is not of the form 2a%u(j) for some j,
then w(n + 1) = w(n) + 1. The theorem follows.
7.12. Corollary. w'(n) = 2a%u(n) + n.
Proof. By Theorem 7.10, w(2a%u(n)) = 2a2u(n) + n- 1 and
w(2alu() + 1) = 2a%u(m) + n + 1.
For all n not of the form n = 2a%u(j), we have w( +1) = w(n) +1 and thus

(w') = {ZaZu(n) + nl n=1,2,3, }

As usual, w' is taken to be monotonic, and the theorem follows.
7.13. Corollary.

@ b)) = uv(n)

(ii) b -1 = uv'(vip) - n)
(iii) b - 1 = u(vin) - 1)
(iv) abau(n) = uv'(@®u(n) + n) .

Proof. (i) is evident from the definition of v. Statements (ii) and (iii) follow from the
fact that b(n) - 1 = uv(n) - 1 = u(v(n) - 1), and then by Theorem 2.2 v(n) - 1 = v'(v(n) - n)
since v is a separated function. To see (iv), note that abau(n) = ba?u(n) + 1. Then
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abau(n) = uv@2Zu(n)) + 1

u(v@tu(@) + 1) .

By Corollary 2.3 we have

vi(v@%u(n)) - a%u(n) + 1) = viau@@)) + 1.
By Theorem 7.9 we have

viafu()) + 1 = vi(w(2a%u(n)) - a%u@) + 1)

v'(2a’u(n) + n - 1 - afu(n) + 1)

vi(au(n) + n) .

This completes the proof.
7.14. Theorem. yt(n) = 2n and yt'(n) = 2eu'(n) - 1.

Proof. By the definition of y, we have
est(n) = b(n) = uwyt(®) = uvin) .

We know by Theorem 7.9 that v(n) = w(2n), and so wyt(n) = w(2n), that is, yt(n) = 2n.
Secondly, est'(n) = au'(n) = a(bsfn) + 1) = bl@as(®n) + 1) - 1 = uwyt'(n). Now

b@as(m) + 1) = uv(@s(n) + 1) = uw(2as(n) + 2)
and since
basm) + 1) - 1 € (uw) ,
we have
w(2as) + 1) = wyt'(n) .

Now eu'(n) = as(n) +1, and so
2as(n) +1 = 2eu'(n) - 1 = yt'(n) .
This completes the proof.
7.15. Theorem. A() = 3n ~ n(' < n).

Proof. We show that if n = bs(j) for some j, then Xn+1) = Aln) +2, and for all

other n we have )\n + 1) = xn) + 3. Then clearly

An)

If

3n -n(bs < n)

(7.16) 3n -ns +1 £ n)

3n -n{u < n).
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In the proof, we shall require the fact that zt(n) = ca(n) +1 and zt'(n) = cbs() + 1.
Case 1. n = a(j). Then c(n) = ca(j) = z'2a(j), and ca(j) +1 = zt(j). By 2.18,

cla@) + 1) = ca(j) +4 = z'A@() + 1).

Since (z) C (c +1), we have ca(j) +2 and ca(j) +3 € (z'), and so Aa(j) + 1) = aa(j) + 3.

Case 2. n = b(j) where j & (s). Then b(j) = a%(j) +1, and zta(j) = ca(j) + 1. Also
z'a2(j) = ca®(j) and z'A\b(j) = cb(j) = ca®(j) +4. Again ca?(j) +2 and ca?(j) +3 € (z'), and
we have 2b(j) = Mb() - 1) +3. Since j & (s), cb(n) +1€ (z'), and so are cb(n) +2 and
cb(n) +3. By 2.19, cb() +3 = c(b(n) + 1) = z'X(b(n) +1). Thus Ab(n) + 1) = Ab(j) + 3.

Case 3. n = bs(j). Then chs(j) +1 = zt'(j), cbs(j) = z'Abs(j), and cbs(j) + 3 =
c(bs(j) +1) = z'AMbs(j) + 1). Since cbs(j) +2 & (z'), we have Abs(j) +1) = Abs(j) + 2. This
completes the proof.

The function 7 is of interest for the following reasons. Recall that the function r sat-
isfies (r) = (b) U (@%u). Thus we get (er) = (a) U (au), and er is not strictly monotonic.
In particular, if r(k) = b(n) - 1 and r(k + 1) = b(n), then er(k) = er(k+1) = a(n); o(n) =
k+1) and 7(n) = k. On the other hand, if r(k) = bu'(n), then er(k-1) # er(k) and

er(k + 1) # er(k); thatis, the value er(k) = au'(n) is not repeated, and we have
ptu'm) = gu'(®) = Tu'(n) .
7.17. Theorem. We have, for all n,

b(n) - o(n)

I

ro(n) - o(n)

r7(n) - 7(n) .

Proof. We need only note that if 7(n) = og(n) - 1, then r7(n) = ro() - 1.
7.18. Theorem. The function K defined by K(n) = n(b < c(n)) is strictlymonotonic. .

Furthermore, we have

()] Kb(n) = c() - 1

(ii) Ksin) = zm) - 1
(7.19)

(iii) Ka’u(n) = cu(n) - 2

(iv) K') = (z) U (cbr).

Proof. Since c(n +1) - c(n) = 3, and of the three consecutive integers c(n), c(n) +1,
c(n) + 2 atleast one must be in (b), it is evident that K(n + 1) = K(n) + 1, so that K is
strictly monotonic. To see (i), we have
nbo < cbr(m)) =n( < ber(n)) = cr@m) -1

nb < cbs(n)) =ndm < bes(n) - 1) = cstn) - 1.
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For (ii), n(b < ecs(n)) =n( < bz()) = z(n) - 1. For (iii), we have
nb < calfu()) = ca’u() - 1 - nl@a < ca?u(n)) .
By Theorem 3.6, we know ca?u(n) = a(cau(n) - 1), and so

Ka2u(n) cau(n) - 1 - n@ < a(cau(@) - 1))

= ca?u() - 1 - [cau(m) - 2]

= ca’u(m) - cau(n) + 1

= adu(n) + 2a%u(n) - bau(n) - au(m) + 1

= [bau(n) - 1] + 2a%u(n) - au(m) - [bau@) - 1]
= a%u(m) + [bu() - 1] - au)

= a?u(n) + u(@ - 1

= bu(m) - 1 + u(n) -1

= cu(n) - 2
Finally to see (iv), first we note that
Kbn) = ctn) -1 (z0 and Ks@) =z -1¢ (z).

We show that cu(n) - 2 € (z). If u@® - 1€ (@), then c(ul) - 1) +4 = cu(). Since
cu(n) - 2 # c(§) +1 for any j, then in this case cu(n) - 2 & (z).

Suppose u(m) - 1 = b(j) for some j. Then (since (u') = (bs +1)) we must have
j €(r), say j = r(k) for some k. Then c(u(n) - 1) +3 = cu(n), and culn) - 2 =cbr(k) +1
and this is not a value of z.

Now from (i), (ii) and (iii) we have, for all n,

cbm) +2 € (c - 1) C (K

caln) +3 € (c - 1) C (K
estn) +2 = c(st) +1) -2 € (cu - 2) C (K
ca?u(n) + 2 = clbu@m) - 2) € (cu - 2) C (K)

ztln) - 1 € (K)

ca(n)

cbs(n)

zt'm) - 1 € (K)

cbr(n) + 1 € (cu - 2) € (K)

while cbr@) € (K'), ca@m) +1& (K'), and chs@) +1 € (K'). Thus (iv) holds.
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7.20. Theorem.

()] K'br(n) = cbr(n)
(ii) K'a(n) = ca(n) + 1
(iii) K'bs(n) = cbs(n) + 1 .

Proof. This is evident from the fact that
(K") = (cbr) U (ca + 1) U (cbs + 1)

7.21. Theorem. The following are equivalent,

(a) K'(j) = z)
(b) n =j-nlbr < j
(c) n = c) +1 = x(@)

Proof. Since (K'Y = (z) U (cbr), itis evident that (a) and (b) are equivalent. To see

that (b) and (c) are equivalent, we show that, for all j,
(7.22) j-nbr <j) =c@ +1 -2 .

Recall that 2(j) = 3j - n(@ £ j) (Theorem 7.15). That is,

AG) = 3j - nlbs +1 <))

= 3j - nlbs < j)

Now
nbs < j) =nb < j -nlr < j
=j-1-n@ < j -nbr <j
=j-1-(@@G -3 -nbr <j
= 2j - 1 = a(j) - nlbr < j
Thus

Il

MG = 3j - [2§ -1 -a@ -nbr < j]

=j+1+a() +nlr < j

b() + 1 + nlbr < j)

Now c(j) +1 - 2a@G) = j- nlbr < j), and this completes the proof.
7.23 Theorem.

(1) tar(n) = br(n) - n
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(ii) Kt(br(n) - 1) = ztar(m)

(iii) cbr(n) = z'(b%r(n) + n) .
Proof. To see (i) we use Theorems 7.20 and 7.21. We have K'br(n) = cbr(n) and

K'(br(n) + 1)

clbrn) + 1) + 1
= c@’r(n) +2) + 1
= cafar(n) + 1) + 1

= ztlar(n) + 1)

Then by Theorem 7.20(b) we have

1l

tar(n) + 1) (br(m) + 1) - nbr < br(m) + 1)

br(n) + 1 - n.

Since t(n) - t(n - 1) =1 unless n-1¢& (as), we have tar()) = br(n) - n. This proves ().
To see (ii), we have K'(br(n) + 1) zt(ar(n) + 1) and K'(br(n)) = cbr(n). Thus
K'(br(n) - 1) € (z) and by (i), K'(br(n) - 1) = ztar(n).
Finally, (iii) follows from the fact that

Il

ztar(n) - 1 = z'(ztar(n) - tar(n))
= z'(ca’r(n) + 1 - br(n) + n)
= z'(cbr(n) - 4 + 1 - br(n) + n)

= z'(b%r(n) - 3 + n) '

Now ztar() +k € (z') for k = 1, 2, 3 and so

cbr(n)

z'(b’r(n) + n) = ztar(n) + 3 = ca’r(n) + 4

This completes the proof.

7.24. Corollary. Aor(m) = bPr(n) +n .

Proof. By definition, cbr(n) = z'Abr(n), and the result follows from Theorem 7.23
(iii).

7.25. Theorem. p' is separated.

Proof. We show that p(n +1) -p() = 1 or 2.

Case 1. n = t(j) and n+1 = t(j +1). Then p(n) = pt(j) = 2j -n(@' £ j) by Theorem
7.2, and pla+1) =pt(j+1) =2j+2-n@ <j+1). Then pm+1) — pn) = 2 -85 where
§=1if j+1 &) and &§ =0 if j+1€& (u").
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Case 2. n = t(j), and n+1 = t'(k). Then j = as(k) and we have

p) = ptlas(k)) = 2ask) - n = as(k))

pln + 1) = pt'k) = 2ask) +1 - n@ = as(k) + 1).

Since as(k) +1 € (b), it follows that as(k) +1€ (u') and so p(+1) -p®m =1 in this
case.
Case 3. n =t'(j)and n+1 = t(k). Then k = as(j) +1 and we have

pn) = 2as(j) + 1 - n@ = as() + 1)

pa + 1) = 2as(j)) + 2 - n@' < as(j) + 1)
and
pn + 1) - pn) = 1.

This completes the proof.
7.26. Theorem. ¢' is separated.
Proof. We show that ¢(n + 1) - ¢(n) £ 2. By Theorem 7.2, we have

o) = pttn) = 2n - n@' < n).
Then

on +1) -g) =2 -3§

where § =1 if n+1 € (u)! and § = 0 if n+1 & (u'). This completes the proof.

7.27. Theorem. o) = An) - n.

Proof. This is evident from the fact that o(n) = 2n -n(uw' < n), while (by Theorem
7.15) A@) = 3n -n @' < n).

7.28. Theorem. (n = (@) u (ou").

Proof. If n > 1, we have ou(n) - g(u(n) - 1) = 2, as above, and thus for all n,
ou(n) - 1 € (0'). On the other hand, cu'(n) -1 =c¢g(u'(n) - 1). Since for all n, o +1) -
o) £ 2, we know (0') C (6 -1). It follows that 7u@) =gu() -1 & (¢') and further

(tu) = (¢0*). Since Tu'(n) =gu'(n), the proof is complete.
7.29. Theorem. (a) ou(n) = u(m) + n
(b) Tu(m = u(@ +n -1
(c) ocu'(n) = 2u'(n) -n = Tu'(n) .

Proof. (a) We have ¢(n) = 2n -n(u' < n) for all n. Then ou() = 2u(m) -n@' =
u(n)). By Theorem 2.1, we know u(n) = n +n (' < u(n)). Thus

o(u@) = 2u(m) - (u@) - n) = u@) +n.
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Statement (b) follows from (a) and the fact that Tu(n)

ou(n) - 1. To see (c), we have
ou'(m) = 20'() - n = u'()).

Then ou'(n) = 2u'() - n.
7.30. Theorem. (a) (n)

ou(n)

(b) o'(n) = Tu(n) .

Proof. First, (1) = (ou - 1) U (ou'), in particular mu(n) = gufn) -1 and 7Tu'(n) =
ou'(n). Since cu'(n) -1 = glu'(n) - 1), we have (1) = (guw), and (@) follows. Statement (b)
is proved similarly.

7.31. Theorem. For each integer n > 0, put Jn =1n(eu' () ~j <n). Then

(@) y' is a separated function
(b) y'(eu'ln) - n) = 2(eu'(n) - 1) - 1
(c) y'(eu'(n) - n + 1) = y'(eu'(n) - n) + 4

(d) If j is not of the form eu'(n) - n, then y'(G + 1) = y'(G) + 2.
(e) v = 2(n + Jn) - 1.

f) vy - new' < n)) = 2n - 1.

Proof. By Theorem 7.14, we know yt(n) = 2n and yt'(n) = 2eu'(n) - 1. It follows that

(y') = (@n - 1)/ (2eu' - 1)
and it is evident that y' is separated. Clearly if y'(j) = 2eu'(n) - 3 for some n, then
y'(j +1) = y'(G) +4, and otherwise y'() = y'(j) + 2. We prove statement (f). Clearly if
y'(j) = 2n - 1, then since
{y’(k):y’(k) < 2n - 1} = {Zj -1:j=1,2,---,n and j ¥ eu'}

we must have j = n-n(2eu' -1 < 2n -1) = n -neu' < n). To see (b), it follows from (f)
that

y'(ew'(m) - 1) - (o - 1)) = 2(eu'®) - 1) - 1 = 2eu'(n) - 3.

Statements (c) and (d) are evident from (f) and the fact that numbers of the form 2eu'(n) -1

are the only odd numbers in (y). To see (e), suppose that
e'(G) -j < n L ea'G+1 -(G+1),

say n = eu'(j) -j +k. Then
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') = y'leu(j) - j) + 2 + 2k

= 2eu'(j) - 3 +2 + 2k

= 2(eu'(j) + k) - 1

= 2([ewr(§) - j] + [k + 3§D -1
=2n+2j-1

= 2n + 2nfeuw'(m) - m < n) - 1

= 2(n + Jn) -1
This completes the proof.

8. ASYMPTOTIC PROPERTIES

In this section, we show that the function s is asymptotic to the function c¢. In par-
ticular, s(n) ~ (@ +2)n. Similar asymptotic results follow at once for all the auxiliary func-
tions introduced so far.

8.1. Theorem. n € (s) if and only if

—‘-Z—-S.{ozn}< 1.

NS

Proof. Recall that n € (s) if and only if ac(n) = ca(n) + 2. By definition, we have

(8.2) can) = [afon]] + 2[an]
(8.3) acn) = [a([en] + 2n)] .
Put
an = m + g (0 < ¢ <1
Q’m=k+€z (0<€2<1).

By 2.20, we have € = 1+ (1 - @) €.
Thus we have

(8.4) ca(n) = [am] + 2m = k + 2m
and
(8.5) ac(n) = [a(m + 2n)] = [am + 2on]

L]

[k + € + 2m + 2¢]

]

k + 2m + [e + 2¢ |

Then n € (s) if and only if [e€; +2¢; ] = 2. Now
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€9 +2¢ = 1+ (1 -a)eg + 2¢
=1+ (3 - aey
and so n < (s) if and only if
(8.6) 1< B-ae; < 2,
that is, if and only if
1 2
< <
3-a = 9 3 -«
Note that
2 >
3 -« 1

and ¢ < 1, so this reduces to:

(8.7) n € (s) S 1 < {em} < 1.
3 -«
Since @ = }(1+~5), itis easy to show that
1 _ o«
= —
3 -« '\15

and this completes the proof.

8.8. Theorem. We have s(n) ~ c(n).

Proof. We require the fact that the values of {an} are uniformly distributed in (0, 1)
(see [5, Th. 6.3]). It follows from the previous theorem that

(8.9) ne < n ~-3%n
NB

r]v(s < n) ~ (1 —i_)n .
NE

Since s(n) = n+n(r <s()), we have

s) ~n+ -2 sm, st~ —2—
NG 1 - &
(8.10) NE
st

— o+ 2
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On the other hand, c(n) = [(@ +2)n], and it follows that s(n) ~ c(n). This completes the
proof.

8.11. Corollary. (i) t'@m) ~ b2(n)

(ii) u'(n) ~ belm) + 1.

Proof. This is evident from the fact that t'(n) = as(u) +n and u'(n) = bs(n) + 1. The
result follows from Theorem 8.8.

Clearly, similar results could be stated for most of the functions considered previously,
since these were defined in terms of a, b, and s.

Recall (Definition 2.7) if

exists and # 0 we set

In view of Theorem 8.8, we have

n—-sg n

exists, and is not 0. Then all of the functions introduced so far also satisfy

lim f)
n_;(o n

exists, since they are defined in terms of s, a, b, ¢, and e. Then we have the following:

8.12. Theorem. We have

() c, = a, ey = a+1
(ii) c, = a+2, Cor = 3 -«
(iii) cs=oz+2, cr=3—a
2
tiv) o, =EIE = L, o, =3a+1
NG NF
_NB -
(V) Cu =5 Cu' = 4o + 3
. _ 3+ A§ _ 2%
(vi) 6, = /=, ¢, = o7
5
‘s _ 20+ 1 _
(vii) ¢ T T T2 ct'—oz4
(viii) c = 5, c, = 5/4
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” _ 2+ A5 1
(ix) CO—T, ca =gt
(%) CT = w’ CT' = =+
NG
- _ 4 _ s _ e+ 2)
) P e )

9. CONJECTURES

Many of the results in the preceding sections were first arrived at empirically, using
extensive numerical data. We list here some conjectures, also arrived at '"by inspection,"

which remain unproved.

9.1) tt'(n) = tn) + t'(n) exceptfor n & (bs)
9.2) ts(n) = et'(n) except for n & (bs)
(9.3) t'b(n) & (a2) except for n € (s)
(9.4) [xt'(m) - 2t'()] < 2

It has been shown that the functions s and c¢ are asymptotic (Theorem 8.8) and also
that there are infinitely many values of n for which s(n) = c(n) (Theorem 5.12). It re-
mains an open question whether the difference |s - c| is bounded. More generally, what is
the smallest @Z 0 such that

|s@) - c)]| = 0@ e (e > 0.

Numerically, we have for n < 101, |s(n) -cl)] = 5.
Of course any such result for s and c¢ implies corresponding results for other pairs
(e.g., for t' and b?, or for u' and bc).

th integer k such

We could define another function, say g(n), where g(n) is the n
that s(k) = c(k). Itis evident from Theorem 5.12 that if n & (g), then t'(n) +1 &€ (g). The
numerical data indicate a possibility that if n € (g), thenalso t'(n) +4 € (g), but this re-
mains unproved.

Finally, it would be very interesting to have an "infinite union' formula for the function

t', similar to that for s given by Theorem 5.15.

10. SUMMARY
1. cbs(n) = bes(n) - 1 = a’cs(n)
2. cbr(n) = becr(n)

3. cs(n) = bz(n)
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10.
11.

12.

13.

14.

15.
16.
17.
18.
19.
20.
21,

22.

23.

24.
25.
26.
217.
28.
29.

30.

SOME ARITHMETIC FUNCTIONS RELATED TO FIBONACCI NUMBERS
cas(n) = a(csh) - 1) = acs(n) - 2
car(n) = acr(n) - 1

a(ctn) - 1) if catn) € (a)
alch) - 1) + 1 if ca(n) & (b)

ca(n) =
cabr(n) = bacr(n)
cabs(n) = bacs(n) - 2
cab(n) = b(ca(n) + 1)
cb?(n) = beh(n)
ecb(n) = ac(n)

eca(n) = cn) - 1

cb(n) = cn) -1

c'(b(n) - 1) = cn) - 2
c'(b(n) + 1) = c(n) +1
c'(bn) + 2) = cl) + 2
cn) + c'n) = 5n - 1

c'@) = n +7Mb < n)
cta(n) = c'la(n) +1) -1
clab(n) = ca(n) + 1
ec(n) = c'¢(n)
¢am) = b(n)
¢br(n) = abr(n)
¢bs(n) = abs(n) + 1

¢$s(n) = bes(n) = asm) +1

o0 = ety b E o]
da(n) + ¢'a() = ¢¢ra(m) - 1
Y) = ep'(n)
Yrrm) = br)

Y's(n) = bs(n) +1 = u'(n)

]
[\

¢br(n) - ¢'ar(n)
¢'9s(n) = abs(n)
¢¢'s(n) = abs(n) -~ 1

[Nov.
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31. ¢ ¢'r(n) = bar()

32. ¢s@) + c'sln) = 3s)

33. ab(n) = st(n)

34. st'(m) = a’u'(n) = a%(bsn) + 1)
35. z(n) = c's(n)

36. es(n) = rp(n)

37. aes(n) = s() = arp(n)

38. b(n) = rpt(n)

39. ptn) = oln)

40. b(n) = ro(n)

41. b@) = uv(n)

42. u'() = bs() + 1

43. t'(n) = as(n) + n

44. tas(n) = t'@) -1

45. z(n) = c(z(n) - s(n) + 1
46. s(n) = b(z(w) - s@) + 1
47. az(n) - as(n) = a(z(@ - s() + 1
48. zt(n) = ca() + 1

49. zt'(n) = chs(n) + 1 = b2z(n)
50. s(n) = cl)<=>t'(n) = bi(n)
51, zt() - st(@) = a(n)

52. zt'(n) - st'(n) = bsn)

53. bas(n) = rp(t'(n) - 1)

54. az(n) - as(n) = es()

55. z(n) + es(n) = 2s(n)

56. w'n) + z(n = 4s)

57. tb*(n) = t(n) + b%(n)

58. t't) = tl@) + b%(n) - 1 = th’@) - 1
59. t'tn) = alb() + t(n)

60. tab(n) = te(n) + ab() - &

where § =0 if n € (b) and § =1 if né& (a)
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61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

SOME ARITHMETIC FUNCTIONS RELATED TO FIBONACCI NUMBERS

tst'(n) = ts(n) + bu'(n) - 1
tst'(n) - st'm) = ts(n)
r(2u'(n) - n) = bu'(@) = st'() + 1
b@ = r@n - @' = n))

c?r(n) = 5br(n)
c®s(n) = 5bs(n) + 1
es(n) = ux(n)

Tu(m) = oum) - 1
mu'(n) = gu'(n)

K@ =10 < c@)

(ab)'(n) = uw(n)
es(n) = uwy(n)
cn) = z'A(n)
ptm) = 2n - N@' = n) = o) = An) - n
pt'(m) = 2as() +1 - N = as() + 1)
v(n) = b - M(s < n)
xt(n) = v(n)
xt'(n) = au'() - (s < as(n))
v(n) = w(2n)
vin) -1 = w(2n - 1)

w@m) = n + N(2a%u < n)

w'(n) = 2a%u(n) + n
b)) - 1 = uv'(v(n) - n) = u(vln) - 1)
abau(n) = uv'(a?u(n) + n)

yt) = 2n
yt'(n) = 2eu'(n) - 1
An) = 3n - N(u' = n)
ro@) - o = b - o) = rr@) - (@)

Kb(n) = ch) - 1
Ks(n) = z(n) - 1
Ka?u(m) = cu(m) - 2

[Nov.
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90.

91.
92.
93.
94.
95.

96.

97.

98.

99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.

116.

SOME ARITHMETIC FUNCTIONS RELATED TO FIBONACCI NUMBERS
K'br(m) = cbr(n)
K'an) = ca(m) + 1
K'bs(n) = chs(n) + 1
K'(j) = zln) & n =j-Nr < j) = c@G) +1 - AG)
tar(n) = br() - n
K'(br(n) - 1) = ztar(n)
cbr(n) = z'(b*r(n) + n)
Abr() = br(n) + n
sin) ~ c)
t'() ~ b(n)
u'(n) ~ be(n)

2u(n) + n

Au(n)
Au'(n) = 3u'(n) - n
vs(n) = u'(n) - n
vr(n) = ar() + n
(8) = (@b) U (a%u")
() = () U (bu - 1) = (b) U (%)
(es) = (@au)' = (au") U (b)
(u) = (ab%) U (abau')
() U (abau) = (ab)
(W = @) U () U (@bau) = (b) U (b - 1) U (abau)
W = @) U " = © J @uv
(es) = (b) U (au) = (ux)
ux) = (uxt) U (au") = (uxt) U (uxt")
@ = (b U @br) U (@bs +1) = (b) U (abr) U (au")
©') = (abs) U (a%(bes)') = (abs) U (a(eu')")
W) = (e¢') = (bs) U (aleu")")
(eu) = (b®) U (bau')
(ew) U (bau) = (b?) U (ba) = ()
(eu)' = (@) U (bau)

W) = (@%) U (abaw) U (bs)

383
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117.

118.

119.

120.

121.

122.

123.

124,

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

SOME ARITHMETIC FUNCTIONS RELATED TO FIBONACCI NUMBERS
@Y = @) U (br)
(ey!) = (eu") U f(ar)
(') = ablaz - as)
(@ ={n|aen = n}
(0 ={n|aen = n -1}
cn) € @ <>n € [@/6)] U (bs) = @%) U (bs)
a(n) = n +n@ < n)
en) =nN@ = n)
a(n) = tl) +n@r < n)
tln) = n +n(as < n)
tm) =MN(s < bin))
(M@ < sm))) = @%) U (@bs) = @z - s))
z{n) = asn) - n +1 +1n (@ < n)
z{n) +2n = t'(n) + 1 +N(* < n)

nitm < t < t) + b%n)) = n

An) 3n -N(s < n)

An) = n+1 -1 < b@)
A < b)) = 2n -1 -1 =X n)
2s(n) = t'@@) + 1 + Ntar < n)
2ab() = t@) + b*@) + Mar < n)

ntr < tn)) = N@s < n)

[>'e]

© = U @@
k=0

@ = G U [U (a(a%)kab)] U [U (a(azb)ka3)]
k=0 k=0

@) = |J @ba))
k=0

@ =® U ®b-1 U [U (ab(azb)kab)J U [LJ (ab(a2b)ka3)]
k=0 k=0

s(fk(n)) = a(azb)kb(n)

[Nov.
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142.
143.
144.

145.

SOME ARITHMETIC

f, (n)

£, (b2m) - 1)

FUNCTIONS RELATED TO FIBONACCI NUMBERS
s'[t')kt(n) = a(azb)kb(n)

= %) k= 0,1,2, )
w (i, ) = aba) bm)

< R < f  0P0) k=123 ).

The following functions are separated:

z' 1 2

t!

t

ul

u

w!

s 3 8

r 1 2

3 4 5
4 6 8
7 10 13

b, ¢, s, ¢", ¥, t', z, u',
K', v, y', w', A, p', O, T'

Table 1
6 7 8 9 10 11 12 13 14 15 16
9 11 12 14 16 17 19 21 22 24 25

15 18 20 23 26 28 31 34 36 39 41

10 14 18 21 25 28 32 36 39 43 47 50 54 57

11 16 19 21 24 29 32 37 42 45 50 53 55 58

4

3

5

5

6 7 9 10 12 13 14 15 17 18 20 22

6

z 4 11 15 22 26 29 33 40 44 51 58 62 69 73 76 80

7 8 9 10 12 13 14 16 17 18 19

17

27

44

61

63

23

87

20

5 14 20 29 35 39 45 54 60 69 78 84 93 99 103 109 118

1 2

3

4

6

7 8 9 10 11 12 13 15 16 17 18

19

385

8 21 29 42 50 55 63 76 84 97 110 118 131 139 144 152 164

1 2
1 2
2 4
1 3
2 5
1 3
1 2
3 10

3

15

4

22

5

11

12

29

6 7 9 10 11 12 13 14 15 16

Table 2
6 7 8 9 10 11 12 13 14 15 16
10 12 14 15 iv 19 21 23 24 25 27

13 16 18 20 22 26 28 30 32 36 38

14 17 19 21 24 26 28 31 33 36 38

10 11 13 15 16 18 20 22 23 25 27

7 8 9 11 12 13 14 16 17 18 19

17

17

41

40

20

34 41 52 59 64 71 78 83 90 95 102 109
(continued)
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y!

AV

K
K'

3

3
11

10

5
15

11

11

13

10

10

6
18

12

10

10

13

18

10
14

12
11

11
12

8
22

Table 2 (continued)

14

13

12

15

21

10

12
17

11
18

14
13

14

9
26

17

15

14

17

23

11

19

16

16

19

26

13

Table 3

8
5

13
19

12
21

15
16

15
17

10
29

9
6

15
22

14
23

17
18

16
19

12
33

21

18

18

21

29

10

16
25

16
26

19
20

18
21

13
36

24

20

20

23

32

16

11

18
27

17
29

26

22

22

35

17

12

20
30

19
31

23
24

22
25

16
44

28

23

24

29

38

19

13

8

21
32

20
34

25
26

24
27

17
47

31

41

20

14

23
35

22
36

27
28

26
29

19
51

31

27

26

44

22

15

24
38

24
39

29
30

28
31

20
54

33

28

37

47

24

16

10

26
40

25
42

31
32

30
33

21
58

36

32

30

39

50

17
11

28
43

27
44

33
34

32
35

23
62

[Nov. 1973]

Fifty pages of extended data tables are available (for $2.50) from Brother Alfred Brousseau, St. Mary’s College, Maraga,

California 94575.
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