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The rectangle in the figure is composed of unit squares: NP = F 2 , NQ = F , 
NR = F 0 ^0 and MN = 1. It follows that MP = (F2

0 + l ) 1 / 2 , PQ = F 0 - - F 0 , and 2n+2 2n 2n+l 2n 
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Starting with the well-known identity 

we have 
F2n+lF2n+2 F2nF2n+3 ±9 
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arccot F n ,- + arccot Frt 
2n+l 2n+2 

Therefore, triangles QPM and MPR are s imilar , since the sides including their 
common angle are proportional. Therefore /̂JVERP = ^_QMP. It follows that / MPN = 
/̂_QMP +/_MQP = /_MRP +/JVEQP. That i s , arccot F 2 

Thus we write: 
arccot 1 = arccot 2 + arccot 3 

= arccot 2 + arccot 5 + arccot 8 
= arccot 2 + arccot 5 + arccot 13 + arccot 21 
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arccot F 0 . , - + arccot F n J O 2 l+l 2n+2 

arccot F, 2i+l 

This resul t was announced by D. H. Lehmer [l] in 1936, and proved in different ways 
by M. A. Heaslet [2] and V. E. Hoggatt, J r . [3 ,4 ] . The first value of arccot 1 above applies 
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to G a r d n e r s three-square problem [5] which has been proven synthetically in 54 ways [6]. 
Proof of the second value of arccot 1 is asked for in [7]. 
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[Continued from page 526. ] 

X = k — - (n = 3, 4, 5, 6) 
n2 - 22 

or in the better known form: 

\ 22 n2 / 

where V is the frequency and R the nRydbergfs constant. M 

It may be of interest to note that all denominators of the simple fractions used by 
Balmer for deriving his formula, i. e. , 3 , 5 , 8 and 21, are Fibonacci numbers. 


