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to G a r d n e r s three-square problem [5] which has been proven synthetically in 54 ways [6]. 
Proof of the second value of arccot 1 is asked for in [7]. 
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[Continued from page 526. ] 

X = k — - (n = 3, 4, 5, 6) 
n2 - 22 

or in the better known form: 

\ 22 n2 / 

where V is the frequency and R the nRydbergfs constant. M 

It may be of interest to note that all denominators of the simple fractions used by 
Balmer for deriving his formula, i. e. , 3 , 5 , 8 and 21, are Fibonacci numbers. 


