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to Gardner's three-square problem [5] which has been proven synthetically in 54 ways [6].

Proof of the second value of arccot 1 is asked for in [7].
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(n = 3, 4, 5, 6)

or in the better known form:

where V is the frequency and R the '"Rydberg's constant. "
It may be of interest to note that all denominators of the simple fractions used by

Balmer for deriving his formula, i.e., 3, 5, 8 and 21, are Fibonacci numbers.
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