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H-234 Proposed by R. E. Whitney, Lock Haven State College, Lock Haven, 
Pennsylvania. 

Suppose an alphabet, A = {xl 5 x2, Xg, • • •} , is given along with a binary connective, 
P (in prefix form). Define a well formed formula (wff) as follows: a wff is 

(1) x, for i = 1, 2, 3, • • • , or 

(2) If Al5 A2 are wfffs, then PAtA2 is a wff and 

(3) The only wfffs are of the above two types. 

A wff of order n is a wff in which the only alphabet symbols are xl5 x2, • • • , x 
in that order with each let ter occurring exactly once. There is one wff of order 1, namely 
xA. There is one wff of order 2, namely Pxtx2. There a re two wff's of order 3, namely 
Px1Px2X3 and P P x j X ^ , and there are five wff?s of order 4, etc. 

Define a sequence ( G )°° 
J i=i 

as follows: 
g. is the number of distinct wff?s of order i. 

a. Find a recurrence relation for G. and 
1 x i=i 

b. Find a gene raiting function for \G. / 
1 i=l 
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H-235 Proposed by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

a. Find the second-order ordinary differential equation whose power se r ies solution is 

n+1 
n=0 

b. Find the second-order ordinary differential equation whose power se r ies solution Is 

T n 

L . ., x n+1 
n=0 

H-236 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Show that 

n=0 n=0 

2n °° . 
(i) > ( - l T x " = > - j f j— n ( i _ x k ) 

" W 2 n k=l 

(2) j2(-»a*(n+i)2 = y ^ ^ - L n (i - x S , 2 n+1 <*> 

^ 2 n + l k=l 
n=0 n=0 

where (x)k = (1 - x)(l - x2) . . . (1 - x k ) , (x)0 = 1. 

SOLUTIONS 

TO COIN A THEOREM 

H-199 Proposed by L. Carlitz and R. Scoville, Duke University, Durham, North 
Carolina. 

A certain country's coinage consists of an infinite number of types of coins: • • • , C 9, 
C ^, C^, C , , • • • . The value V of the coin C is related to the others as follows: for - 1 0 1 n n 
all n, 

V = V o + V Q + V - . n n-3 n-2 n-1 

Show that any (finite) pocketful of coins is equal in value to a pocketful containing at most one 
coin of each type. 
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Solution by the Proposer. 

Call a pocketful Q canonical if it consists entirely of coins of different types and such 
that no three coins of "adjacent" types (e. g. , c , c - and c 9) a re present. Call two 
pocketfuls equivalent if they have the same value. 

We will prove for any pocketful P the statement: 

S: P is equivalent to a canonical pocketful. 

Note that any pocketful containing only differing types is equivalent to a canonical pock-
etful since the three adjacent coins of highest value, C , C -, C + 2 can be replaced by 
C n + 3 , etc. 

Assume for the moment, the following statement: 

R: S is true for any canonical pocketful to which one extra coin has been added. 

Then the general result follows by induction on the number of coins for any pocketful P: Re-
move a coin to get P ? , apply the induction hypothesis to Pf to get a canonical pocketful Q, 
return the removed coin and apply R. 

Now to prove R, let us prove by induction on j the ser ies of statements R.: 

I If Q is any canonical pocketful in which the coin of least value is a C , then if 

a C or a C . and a C be added to Q to get a pocketful P f , then S 

is true for P ! . 
Assume R, for all k < j (it is obvious if k < -3). Now let Q be canonical. We can sup-
pose that n + j = 0. Suppose Q contains S| coins of type C , 5. = 0 or 1, 5.5. -6. 9

 = 

0 for all i. Then 
Q U C0 5 . . . 6_3> 5_ 2 , 8 _ r S0 + l , S r 5 2 , 83 > ••• . 

If 50 = 0, we are finished, so assume 50 = 1. Then 

Q U C0 = . . . 5_ 3 + 1, S_2, S _ r 0, 5 1 + 1, 5 2 , 5 3 , 

Again, if S1 = 0, by induction, we are finished, so assume 51 = 1. Then 

Q U C0 = . . . 5_ 3 + 1, 5_2 + 1, 5_ 1 , 0, 0, 6 2 + 1, 5 3 • - . . 

Now, since S Q S ^ = 0, 5 2 = 0 so we are finished. 
For the next part , 

Q U C0 U Ct = . . . 5_ 3 , 5_ 2 , 5__r 5Q + 1, S± + 1, 8 2 , 5 3 ••• . 
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If either 50 or 8j = 0, this case can be handled as above, so suppose 60 and 8t are 
1. Then 

Q U C0 U Ct 2 2 8n 

S„3 + l S_2 + l 5_ 1 + 1 1 2 8 2 8 3 

8 _3 + X 5 - 2 + 2 8 - l + 2 2 X 5 2 8 3 
5_;3

 + 1 8_2 + 2 8 - l + ! 1 ° 8 2 + X 5 3 

8 - 3 + 1 8 - 2 + 1 0 1 8 2 + l 8 3 

and again, by induction, we are finished. This completes the proof. 
We note, without proof, that no two canonical pocketfuls are equivalent. 

Editorial Note: The given sequences identify the elements of the union. 

ASYMPTOTIC PI 

H-200 Proposed by Guy A. R. Guillotte, Cowansville, Quebec, Canada. 

Let M(n) be the number of primes (distinct) which divide the binomial coefficient, 

.n _ / n \ * 
k • w 

Clearly, for 1 < n < 15, we have M(l) = 0, M(2) = M(3) = 1, M(4) = M(5) = 2, M(6) = 
M(7) = M(8) = M(9) = 3, M(10) = 4, M(ll) = M(12) = M(14) = 5, M(13) = M(15) = 6, 
etc. Show that 

(m ( n )}n=i 

has an upper bound and find an asymptotic formula for M(n). 

*Divide at least one C, .where 0 < k < n. 

Solution by D. Singmaster, Instituto Mathematica, Pisa, Italy. 

For a prime p, if 

1(0 
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for some k5 0 ^ k ^ n, then p|n! and so p ^ n. Hence M(n) rs 7T(n), where 7r(n) is the 
number of pr imes less than or equal to n. We claim M(n) ~~ 77(n). To see this, we can use 
the following result of B. Ram. (See: L. E. Dickson, History of the Theory of Numbers, Vol. 
1; Chelsea, 1952; p. 274, item 98.) There is at most one prime p < n such that 

m 
for 0 < k < n and such a prime p exists if and only if n + 1 = ap with 1 < a < p < n. 

Since Ram's paper is somewhat inaccessible, I will prove a slight sharpening of it, u s -
ing an accessible result. N. J . Fine ("Binomial Coefficients modulo a P r ime , " Amer. Math. 
Monthly, 54 (1947), 589-592, Theorem 4) has shown that 

-/CO 
for 0 ^ k ^ n if and only if n = ap - 1 with 1 < a < p and s ^ 0. Now suppose we have 
two primes pA and p2 with pt< p2 — n + 1 and 

* 

for 0 ^ k ^ n. By Fine's result , we have 

n + 1 = 3iipi l = a2P2 s2 

with 1 < a.t < pt and 1 < a2 < p2. But B.t < pt < p2 implies that p 2 |a 1 p 1
1 , so s2 = 0 

and n + 1 = a2 < p 2 , contrary to p2 < n + 1. Hence there is at most one prime p < n + 1 
such that 

# 

for 0 < k ^ n and such a p exists if and only if n + 1 = ap with 1 ^ a < p. (More d i s -
cussion related to this may be found in my survey paper: "Divisibility of Binomial and Multi-
nomial Coefficients by Pr imes and Pr ime P o w e r s , " (to appear).) 

By carefully examining the role of n + 1, we can deduce the following formulas for 

M(n). 
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M( ) =\ ^n + ^ i f n + 1 ^ a P S w i t h 1 ~ a K P 1 {n) ) 7T(n + 1) - 1 otherwise . 

/ v _ , 7T(n) if n + 1 / ap with 1 =s a < p ^ n 
M W ^ 7T(n) - 1 otherwise. 

Hence M(n) «~ 7T(n) - [ ( l ogn j /n ] " 1 . 
Incidentally, M(13) = M(15) = 5, contrary to what was asser ted in the statement of the 

problem. The first place where M(n) > M(n + 1) is n = 83, where M(83) = 23 and M(84) 
= 22. The next cases are n = 89 and n = 104. From the expression for M(n), we have 
the following necessary conditions for such an n: n + 1 must have three distinct prime fac-
tors and n + 2 must not be prime, 

Also solved by the Proposer. 

DISPLAY CASE 

H-201 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, 
California. 

Copy 1, 1, 3, 8, • • • , F (n ^ 1) down in staggered columns as in display C: 

1 
1 1 
3 1 1 
8 3 1 1 

21 8 3 1 1 

(i) Show that the row sums are F ? - (n = 0, 1, 2, • • • ) . 
(ii) Show that, if the columns are multiplied by 1, 2, 3, • • • , sequentially to the right, 

then the row sums are F 0 i n (n = 0, 1, 2, • • • ) • 
2n+2 

(iii) Show that the rising diagonal sums ( / ) are F2 - (n = 0, 1, 2, "e •) . 

Solution by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois. 

(i) Let R denote the row sum of the (n + 1) row, (n = 0, 1, 2,- • •), with R0 = 1. 
n -1 n n 

Bn = X + ] £ F2n"2k = X +Y1 F2k = X + X ) <F2k+l - F2k-1> = 1 + F2n+1 " l = F2n+1' 
k=0 k=l k=l 
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as asser ted. 
(ii) Let S denote the sum as defined in the problem, for the (n + 1) row, (n = 0, 

1, 2, . . . ) , with S0 = 1. Then, if n ^ 1, 
n n -1 

Sn = 1 C kF2n+2-2k + (n + 1} = ^ (n " k>F2k+2 + <* + « = <n + 1) + 

k=l k=0 

n -1 n - i -1 n -1 

= (n + 1] + ]C X 2 3 F2k+2 = (n + X) + ] C (F2n-2i+l - W = (n + D ^ F. 
i=0 k=0 i=0 i=l 

= 1 + > (F - F ) = 1 + F - F = F 
/ j K 2i+2 * 2 i ; 2n+2 2 2n+2 * 
i=l 

as asser ted. This is also true for n = 0. 
(iii) Let T denote the rising diagonal sums. Then, if n ^ 2, 

n-

1 
k= 

n 

•1 

=0 

«4 

f F2k+2 

F r 2 i + l 

n-k-

I i=0 

• n 

• 1 

\ 
1 

\ (n+1) 2 1 1 2 

Tn = /JF4k + l s if n i s e v e n ; T n = V ^ F4k-2S if n i s o d d ; T0 = T t = 1 
k=l k=l 

m m 2m 

T2m = Yi, F4k + X = ^ + Z ) <F4k+l " F4k-1> = 2 (-1)iF2i+l ; 
k=l k=l i=0 

also, 
m+1 m+1 2m+l 

T2m+1 7 * F4k-2 7 „ (F4k-l F4fc.3> = Z , ( - 1 ) i + l F 2 i + i 
k=l k=l i=0 

Combining these resul t s , we have 
n n 

Tn ^ - ^ m = Z ^ <1+1 + 1 > 
i=0 i=0 

n 

J2 ( - D n ^ + 1 - (-l)n-i+1F| = (-Dn-V+ 1 - (-l)n+1. 0 = F ^ . 
i=0 

This last result is also true for n = 0 and n = 1. 

Also solved by the Proposer'and one unsigned solver. 


