A COMBINATORIAL IDENTITY

MARCIA ASCHER

Ithaca College Ithaca, New York 14850

Define

$$
\begin{equation*}
f(n, k)=2^{n} \sum_{i=k}^{c}(-1)^{i}\binom{n-i}{i}\binom{i}{k} 2^{-2 i} \tag{1}
\end{equation*}
$$

where

$$
c=\left\{\begin{array}{ll}
n / 2, & n \text { even } \\
(n-1) / 2, & n \text { odd }
\end{array} .\right.
$$

By induction, it is proved that

$$
\begin{equation*}
\mathrm{f}(\mathrm{n}, \mathrm{k})=(-1)^{\mathrm{k}}\binom{\mathrm{n}+1}{2 \mathrm{k}+1}=(-1)^{\mathrm{k}}\binom{\mathrm{n}+1}{\mathrm{n}-2 \mathrm{k}} \quad \text { for } \quad 0 \leq \mathrm{k} \leq \mathrm{c} \tag{2}
\end{equation*}
$$

The usual induction procedure must be modified since the identity involves both n and k but only restricted values of k associated with each n. Figure 1 illustrates how the induction proceeds. For the n and k shown, the identity is valid at the darkened grid points. The letter label on a grid point or on an arrow refers to part A, B, C, or D of the proof.

Part A of the proof shows that when n even, assuming (2) is true for (n, k), ($n-1, k$), and $(n-1, k-1)$, then (2) is true for $(n+1, k)$. This applies to all k associated with n and $n+1$ except for $k=0$ and $k=n / 2$. Part B shows that for n even, $k \neq 0, k \neq$ $(n+2) / 2$, assuming as in A that (2) is true for (n, k), adding the assumption that (2) is true for ($n, k-1$), and using the result of A that (2) is true for ($n+1, k$), then (2) is true for $(n+2, k)$. Part C shows that (2) is true for $(n, 0)$ and Part D deals with the special cases of ($\mathrm{n}, \mathrm{n} / 2$) and ($\mathrm{n}+1, \mathrm{n} / 2$) for n even.
A. Starting with
(3) $\quad\binom{n+1}{i}\binom{\mathrm{i}}{\mathrm{k}} \equiv\binom{\mathrm{n}-\mathrm{i}}{\mathrm{i}}\binom{\mathrm{i}}{\mathrm{k}}+\binom{\mathrm{n}-\mathrm{i}}{\mathrm{i}-1}\binom{\mathrm{i}-1}{\mathrm{k}}+\binom{\mathrm{n}-\mathrm{i}}{\mathrm{i}-1}\left(\begin{array}{ll}\mathrm{i}-1 \\ \mathrm{k} & -1\end{array}\right)$
for $1 \leq \mathrm{k} \leq \mathrm{i}-1, \quad \mathrm{i} \leq \mathrm{n} / 2, \mathrm{n}$ even, a factor of $(-1)^{\mathrm{i}} 2^{\mathrm{n}-2 \mathrm{i}}$ is introduced into each term. Each term in the equation is summed over $i=k+1, \cdots, n / 2$. For notational convenience, call the result

Figure 1
(4)

$$
\mathrm{S}_{1, \mathrm{n}}=\mathrm{S}_{2, \mathrm{n}}+\mathrm{S}_{3, \mathrm{n}}+\mathrm{S}_{4, \mathrm{n}}
$$

It is found that, for n even,
(5)

$$
\begin{gathered}
\mathrm{S}_{1, \mathrm{n}}=\left[\mathrm{f}(\mathrm{n}+1, \mathrm{k})-2^{\mathrm{n}+1-2 \mathrm{k}}(-1)^{\mathrm{k}}\binom{\mathrm{n}+1-\mathrm{k}}{\mathrm{k}}\right] / 2 \\
\mathrm{~S}_{2, \mathrm{n}}=\mathrm{f}(\mathrm{n}, \mathrm{k})-2^{\mathrm{n}-2 \mathrm{k}}(-1)^{\mathrm{k}}\binom{\mathrm{n}-\mathrm{k}}{\mathrm{k}} \\
\mathrm{~S}_{3, \mathrm{n}}=-\mathrm{f}(\mathrm{n}-1, \mathrm{k}) / 2 \\
\mathrm{~S}_{4, \mathrm{n}}=-\left[\mathrm{f}(\mathrm{n}-1, \mathrm{k}-1)+2^{\mathrm{n}+1-2 \mathrm{k}}(-1)^{\mathrm{k}}\binom{\mathrm{n}-\mathrm{k}}{\mathrm{k}-1}\right] / 2 .
\end{gathered}
$$

If (2) is true for (n, k), $(n-1, k)$, and $(n-1, k-1)$, (4) can be solved for $f(n+1, k)$ and

$$
\begin{equation*}
\mathrm{f}(\mathrm{n}+1, \mathrm{k})=(-1)^{\mathrm{k}}\binom{\mathrm{n}+2}{\mathrm{n}+1-2 \mathrm{k}} \tag{6}
\end{equation*}
$$

for $1 \leq k \leq(n-2) / 2, n$ even.
B. Using (3) modified such that each n is replaced by $n+1$, a factor of

$$
(-1)^{\mathrm{i}} 2^{\mathrm{n}+1-2 \mathrm{i}}
$$

is introduced into each term and each term of the equation is summed over $\mathrm{i}=\mathrm{k}+1, \ldots$, $n / 2$. The result is

$$
\left[\mathrm{S}_{1, \mathrm{n}+1}-(1 / 2)(-1)^{\frac{\mathrm{n}+2}{2}}\binom{\frac{\mathrm{n}+2}{2}}{\mathrm{k}}\right]
$$

(4)

$$
\begin{aligned}
=\mathrm{S}_{2, \mathrm{n}+1} & +\left[\mathrm{S}_{3, \mathrm{n}+1}-(1 / 2)(-1)^{\frac{\mathrm{n}+2}{2}}\binom{\frac{\mathrm{n}}{2}}{\mathrm{k}}\right] \\
& +\left[\mathrm{S}_{4, \mathrm{n}+1}-(1 / 2)(-1)^{\frac{\mathrm{n}+2}{2}}\binom{\frac{\mathrm{n}}{2}}{\mathrm{k}-1}\right]
\end{aligned}
$$

If (2) is true for $(\mathrm{n}, \mathrm{k}),(\mathrm{n}, \mathrm{k}-1)$, and $(\mathrm{n}+1, \mathrm{k})$, (4') can be solved for $\mathrm{f}(\mathrm{n}+2, \mathrm{k})$ and
(5')

$$
\mathrm{f}(\mathrm{n}+2, \mathrm{k})=(-1)^{\mathrm{k}}\binom{\mathrm{n}+3}{\mathrm{n}+2-2 \mathrm{k}}
$$

for $1 \leq k \leq n / 2, n$ even.
C. When $\mathrm{k}=0$, (3) reduces to the familiar identity
(3")

$$
\binom{n+1-i}{i} \equiv\binom{n-i}{i}+\binom{n-i}{i-1}
$$

for $1 \leq i \leq n / 2, n$ even, and (4) reduces to

$$
\begin{equation*}
\mathrm{s}_{1, \mathrm{n}}=\mathrm{S}_{2, \mathrm{n}}+\mathrm{S}_{3, \mathrm{n}} \tag{4'}
\end{equation*}
$$

where $S_{1, n}, S_{2, n}, S_{3, n}$ are as defined in (5).
Hence, if $f(n, 0)=n+1$ and $f(n-1,0)=n$, then $f(n+1,0)=n+2$ for n even.
Similar modification of Part B leads to $f(n+2,0)=n+3$ if $f(n, 0)=n+1$ and $\mathrm{f}(\mathrm{n}+1,0)=\mathrm{n}+2$ for n even. Verifying by substitution into (1) that $\mathrm{f}(2,0)=3$ and $\mathrm{f}(1,0)$ $=2$ completes the case of $\mathrm{k}=0$.
D. Finally by substitution into (1), it is verified that (2) is true for ($n, n / 2$) and ($\mathrm{n}+1, \mathrm{n} / 2$) for n even.

